main
Raw Download raw file
   1import * as utils from "../utils/common.js";
   2
   3/* Public constants ==========================================================*/
   4/* ===========================================================================*/
   5
   6
   7//var Z_FILTERED          = 1;
   8//var Z_HUFFMAN_ONLY      = 2;
   9//var Z_RLE               = 3;
  10var Z_FIXED               = 4;
  11//var Z_DEFAULT_STRATEGY  = 0;
  12
  13/* Possible values of the data_type field (though see inflate()) */
  14var Z_BINARY              = 0;
  15var Z_TEXT                = 1;
  16//var Z_ASCII             = 1; // = Z_TEXT
  17var Z_UNKNOWN             = 2;
  18
  19/*============================================================================*/
  20
  21
  22function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
  23
  24// From zutil.h
  25
  26var STORED_BLOCK = 0;
  27var STATIC_TREES = 1;
  28var DYN_TREES    = 2;
  29/* The three kinds of block type */
  30
  31var MIN_MATCH    = 3;
  32var MAX_MATCH    = 258;
  33/* The minimum and maximum match lengths */
  34
  35// From deflate.h
  36/* ===========================================================================
  37 * Internal compression state.
  38 */
  39
  40var LENGTH_CODES  = 29;
  41/* number of length codes, not counting the special END_BLOCK code */
  42
  43var LITERALS      = 256;
  44/* number of literal bytes 0..255 */
  45
  46var L_CODES       = LITERALS + 1 + LENGTH_CODES;
  47/* number of Literal or Length codes, including the END_BLOCK code */
  48
  49var D_CODES       = 30;
  50/* number of distance codes */
  51
  52var BL_CODES      = 19;
  53/* number of codes used to transfer the bit lengths */
  54
  55var HEAP_SIZE     = 2 * L_CODES + 1;
  56/* maximum heap size */
  57
  58var MAX_BITS      = 15;
  59/* All codes must not exceed MAX_BITS bits */
  60
  61var Buf_size      = 16;
  62/* size of bit buffer in bi_buf */
  63
  64
  65/* ===========================================================================
  66 * Constants
  67 */
  68
  69var MAX_BL_BITS = 7;
  70/* Bit length codes must not exceed MAX_BL_BITS bits */
  71
  72var END_BLOCK   = 256;
  73/* end of block literal code */
  74
  75var REP_3_6     = 16;
  76/* repeat previous bit length 3-6 times (2 bits of repeat count) */
  77
  78var REPZ_3_10   = 17;
  79/* repeat a zero length 3-10 times  (3 bits of repeat count) */
  80
  81var REPZ_11_138 = 18;
  82/* repeat a zero length 11-138 times  (7 bits of repeat count) */
  83
  84/* eslint-disable comma-spacing,array-bracket-spacing */
  85var extra_lbits =   /* extra bits for each length code */
  86  [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
  87
  88var extra_dbits =   /* extra bits for each distance code */
  89  [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
  90
  91var extra_blbits =  /* extra bits for each bit length code */
  92  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
  93
  94var bl_order =
  95  [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
  96/* eslint-enable comma-spacing,array-bracket-spacing */
  97
  98/* The lengths of the bit length codes are sent in order of decreasing
  99 * probability, to avoid transmitting the lengths for unused bit length codes.
 100 */
 101
 102/* ===========================================================================
 103 * Local data. These are initialized only once.
 104 */
 105
 106// We pre-fill arrays with 0 to avoid uninitialized gaps
 107
 108var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
 109
 110// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1
 111var static_ltree  = new Array((L_CODES + 2) * 2);
 112zero(static_ltree);
 113/* The static literal tree. Since the bit lengths are imposed, there is no
 114 * need for the L_CODES extra codes used during heap construction. However
 115 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 116 * below).
 117 */
 118
 119var static_dtree  = new Array(D_CODES * 2);
 120zero(static_dtree);
 121/* The static distance tree. (Actually a trivial tree since all codes use
 122 * 5 bits.)
 123 */
 124
 125var _dist_code    = new Array(DIST_CODE_LEN);
 126zero(_dist_code);
 127/* Distance codes. The first 256 values correspond to the distances
 128 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 129 * the 15 bit distances.
 130 */
 131
 132var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);
 133zero(_length_code);
 134/* length code for each normalized match length (0 == MIN_MATCH) */
 135
 136var base_length   = new Array(LENGTH_CODES);
 137zero(base_length);
 138/* First normalized length for each code (0 = MIN_MATCH) */
 139
 140var base_dist     = new Array(D_CODES);
 141zero(base_dist);
 142/* First normalized distance for each code (0 = distance of 1) */
 143
 144
 145function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
 146
 147  this.static_tree  = static_tree;  /* static tree or NULL */
 148  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
 149  this.extra_base   = extra_base;   /* base index for extra_bits */
 150  this.elems        = elems;        /* max number of elements in the tree */
 151  this.max_length   = max_length;   /* max bit length for the codes */
 152
 153  // show if `static_tree` has data or dummy - needed for monomorphic objects
 154  this.has_stree    = static_tree && static_tree.length;
 155}
 156
 157
 158var static_l_desc;
 159var static_d_desc;
 160var static_bl_desc;
 161
 162
 163function TreeDesc(dyn_tree, stat_desc) {
 164  this.dyn_tree = dyn_tree;     /* the dynamic tree */
 165  this.max_code = 0;            /* largest code with non zero frequency */
 166  this.stat_desc = stat_desc;   /* the corresponding static tree */
 167}
 168
 169
 170
 171function d_code(dist) {
 172  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
 173}
 174
 175
 176/* ===========================================================================
 177 * Output a short LSB first on the stream.
 178 * IN assertion: there is enough room in pendingBuf.
 179 */
 180function put_short(s, w) {
 181//    put_byte(s, (uch)((w) & 0xff));
 182//    put_byte(s, (uch)((ush)(w) >> 8));
 183  s.pending_buf[s.pending++] = (w) & 0xff;
 184  s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
 185}
 186
 187
 188/* ===========================================================================
 189 * Send a value on a given number of bits.
 190 * IN assertion: length <= 16 and value fits in length bits.
 191 */
 192function send_bits(s, value, length) {
 193  if (s.bi_valid > (Buf_size - length)) {
 194    s.bi_buf |= (value << s.bi_valid) & 0xffff;
 195    put_short(s, s.bi_buf);
 196    s.bi_buf = value >> (Buf_size - s.bi_valid);
 197    s.bi_valid += length - Buf_size;
 198  } else {
 199    s.bi_buf |= (value << s.bi_valid) & 0xffff;
 200    s.bi_valid += length;
 201  }
 202}
 203
 204
 205function send_code(s, c, tree) {
 206  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
 207}
 208
 209
 210/* ===========================================================================
 211 * Reverse the first len bits of a code, using straightforward code (a faster
 212 * method would use a table)
 213 * IN assertion: 1 <= len <= 15
 214 */
 215function bi_reverse(code, len) {
 216  var res = 0;
 217  do {
 218    res |= code & 1;
 219    code >>>= 1;
 220    res <<= 1;
 221  } while (--len > 0);
 222  return res >>> 1;
 223}
 224
 225
 226/* ===========================================================================
 227 * Flush the bit buffer, keeping at most 7 bits in it.
 228 */
 229function bi_flush(s) {
 230  if (s.bi_valid === 16) {
 231    put_short(s, s.bi_buf);
 232    s.bi_buf = 0;
 233    s.bi_valid = 0;
 234
 235  } else if (s.bi_valid >= 8) {
 236    s.pending_buf[s.pending++] = s.bi_buf & 0xff;
 237    s.bi_buf >>= 8;
 238    s.bi_valid -= 8;
 239  }
 240}
 241
 242
 243/* ===========================================================================
 244 * Compute the optimal bit lengths for a tree and update the total bit length
 245 * for the current block.
 246 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 247 *    above are the tree nodes sorted by increasing frequency.
 248 * OUT assertions: the field len is set to the optimal bit length, the
 249 *     array bl_count contains the frequencies for each bit length.
 250 *     The length opt_len is updated; static_len is also updated if stree is
 251 *     not null.
 252 */
 253function gen_bitlen(s, desc)
 254//    deflate_state *s;
 255//    tree_desc *desc;    /* the tree descriptor */
 256{
 257  var tree            = desc.dyn_tree;
 258  var max_code        = desc.max_code;
 259  var stree           = desc.stat_desc.static_tree;
 260  var has_stree       = desc.stat_desc.has_stree;
 261  var extra           = desc.stat_desc.extra_bits;
 262  var base            = desc.stat_desc.extra_base;
 263  var max_length      = desc.stat_desc.max_length;
 264  var h;              /* heap index */
 265  var n, m;           /* iterate over the tree elements */
 266  var bits;           /* bit length */
 267  var xbits;          /* extra bits */
 268  var f;              /* frequency */
 269  var overflow = 0;   /* number of elements with bit length too large */
 270
 271  for (bits = 0; bits <= MAX_BITS; bits++) {
 272    s.bl_count[bits] = 0;
 273  }
 274
 275  /* In a first pass, compute the optimal bit lengths (which may
 276   * overflow in the case of the bit length tree).
 277   */
 278  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
 279
 280  for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
 281    n = s.heap[h];
 282    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
 283    if (bits > max_length) {
 284      bits = max_length;
 285      overflow++;
 286    }
 287    tree[n * 2 + 1]/*.Len*/ = bits;
 288    /* We overwrite tree[n].Dad which is no longer needed */
 289
 290    if (n > max_code) { continue; } /* not a leaf node */
 291
 292    s.bl_count[bits]++;
 293    xbits = 0;
 294    if (n >= base) {
 295      xbits = extra[n - base];
 296    }
 297    f = tree[n * 2]/*.Freq*/;
 298    s.opt_len += f * (bits + xbits);
 299    if (has_stree) {
 300      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
 301    }
 302  }
 303  if (overflow === 0) { return; }
 304
 305  // Trace((stderr,"\nbit length overflow\n"));
 306  /* This happens for example on obj2 and pic of the Calgary corpus */
 307
 308  /* Find the first bit length which could increase: */
 309  do {
 310    bits = max_length - 1;
 311    while (s.bl_count[bits] === 0) { bits--; }
 312    s.bl_count[bits]--;      /* move one leaf down the tree */
 313    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
 314    s.bl_count[max_length]--;
 315    /* The brother of the overflow item also moves one step up,
 316     * but this does not affect bl_count[max_length]
 317     */
 318    overflow -= 2;
 319  } while (overflow > 0);
 320
 321  /* Now recompute all bit lengths, scanning in increasing frequency.
 322   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 323   * lengths instead of fixing only the wrong ones. This idea is taken
 324   * from 'ar' written by Haruhiko Okumura.)
 325   */
 326  for (bits = max_length; bits !== 0; bits--) {
 327    n = s.bl_count[bits];
 328    while (n !== 0) {
 329      m = s.heap[--h];
 330      if (m > max_code) { continue; }
 331      if (tree[m * 2 + 1]/*.Len*/ !== bits) {
 332        // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 333        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
 334        tree[m * 2 + 1]/*.Len*/ = bits;
 335      }
 336      n--;
 337    }
 338  }
 339}
 340
 341
 342/* ===========================================================================
 343 * Generate the codes for a given tree and bit counts (which need not be
 344 * optimal).
 345 * IN assertion: the array bl_count contains the bit length statistics for
 346 * the given tree and the field len is set for all tree elements.
 347 * OUT assertion: the field code is set for all tree elements of non
 348 *     zero code length.
 349 */
 350function gen_codes(tree, max_code, bl_count)
 351//    ct_data *tree;             /* the tree to decorate */
 352//    int max_code;              /* largest code with non zero frequency */
 353//    ushf *bl_count;            /* number of codes at each bit length */
 354{
 355  var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
 356  var code = 0;              /* running code value */
 357  var bits;                  /* bit index */
 358  var n;                     /* code index */
 359
 360  /* The distribution counts are first used to generate the code values
 361   * without bit reversal.
 362   */
 363  for (bits = 1; bits <= MAX_BITS; bits++) {
 364    next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
 365  }
 366  /* Check that the bit counts in bl_count are consistent. The last code
 367   * must be all ones.
 368   */
 369  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 370  //        "inconsistent bit counts");
 371  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 372
 373  for (n = 0;  n <= max_code; n++) {
 374    var len = tree[n * 2 + 1]/*.Len*/;
 375    if (len === 0) { continue; }
 376    /* Now reverse the bits */
 377    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
 378
 379    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 380    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 381  }
 382}
 383
 384
 385/* ===========================================================================
 386 * Initialize the various 'constant' tables.
 387 */
 388function tr_static_init() {
 389  var n;        /* iterates over tree elements */
 390  var bits;     /* bit counter */
 391  var length;   /* length value */
 392  var code;     /* code value */
 393  var dist;     /* distance index */
 394  var bl_count = new Array(MAX_BITS + 1);
 395  /* number of codes at each bit length for an optimal tree */
 396
 397  // do check in _tr_init()
 398  //if (static_init_done) return;
 399
 400  /* For some embedded targets, global variables are not initialized: */
 401/*#ifdef NO_INIT_GLOBAL_POINTERS
 402  static_l_desc.static_tree = static_ltree;
 403  static_l_desc.extra_bits = extra_lbits;
 404  static_d_desc.static_tree = static_dtree;
 405  static_d_desc.extra_bits = extra_dbits;
 406  static_bl_desc.extra_bits = extra_blbits;
 407#endif*/
 408
 409  /* Initialize the mapping length (0..255) -> length code (0..28) */
 410  length = 0;
 411  for (code = 0; code < LENGTH_CODES - 1; code++) {
 412    base_length[code] = length;
 413    for (n = 0; n < (1 << extra_lbits[code]); n++) {
 414      _length_code[length++] = code;
 415    }
 416  }
 417  //Assert (length == 256, "tr_static_init: length != 256");
 418  /* Note that the length 255 (match length 258) can be represented
 419   * in two different ways: code 284 + 5 bits or code 285, so we
 420   * overwrite length_code[255] to use the best encoding:
 421   */
 422  _length_code[length - 1] = code;
 423
 424  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 425  dist = 0;
 426  for (code = 0; code < 16; code++) {
 427    base_dist[code] = dist;
 428    for (n = 0; n < (1 << extra_dbits[code]); n++) {
 429      _dist_code[dist++] = code;
 430    }
 431  }
 432  //Assert (dist == 256, "tr_static_init: dist != 256");
 433  dist >>= 7; /* from now on, all distances are divided by 128 */
 434  for (; code < D_CODES; code++) {
 435    base_dist[code] = dist << 7;
 436    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
 437      _dist_code[256 + dist++] = code;
 438    }
 439  }
 440  //Assert (dist == 256, "tr_static_init: 256+dist != 512");
 441
 442  /* Construct the codes of the static literal tree */
 443  for (bits = 0; bits <= MAX_BITS; bits++) {
 444    bl_count[bits] = 0;
 445  }
 446
 447  n = 0;
 448  while (n <= 143) {
 449    static_ltree[n * 2 + 1]/*.Len*/ = 8;
 450    n++;
 451    bl_count[8]++;
 452  }
 453  while (n <= 255) {
 454    static_ltree[n * 2 + 1]/*.Len*/ = 9;
 455    n++;
 456    bl_count[9]++;
 457  }
 458  while (n <= 279) {
 459    static_ltree[n * 2 + 1]/*.Len*/ = 7;
 460    n++;
 461    bl_count[7]++;
 462  }
 463  while (n <= 287) {
 464    static_ltree[n * 2 + 1]/*.Len*/ = 8;
 465    n++;
 466    bl_count[8]++;
 467  }
 468  /* Codes 286 and 287 do not exist, but we must include them in the
 469   * tree construction to get a canonical Huffman tree (longest code
 470   * all ones)
 471   */
 472  gen_codes(static_ltree, L_CODES + 1, bl_count);
 473
 474  /* The static distance tree is trivial: */
 475  for (n = 0; n < D_CODES; n++) {
 476    static_dtree[n * 2 + 1]/*.Len*/ = 5;
 477    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
 478  }
 479
 480  // Now data ready and we can init static trees
 481  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
 482  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);
 483  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);
 484
 485  //static_init_done = true;
 486}
 487
 488
 489/* ===========================================================================
 490 * Initialize a new block.
 491 */
 492function init_block(s) {
 493  var n; /* iterates over tree elements */
 494
 495  /* Initialize the trees. */
 496  for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
 497  for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
 498  for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
 499
 500  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
 501  s.opt_len = s.static_len = 0;
 502  s.last_lit = s.matches = 0;
 503}
 504
 505
 506/* ===========================================================================
 507 * Flush the bit buffer and align the output on a byte boundary
 508 */
 509function bi_windup(s)
 510{
 511  if (s.bi_valid > 8) {
 512    put_short(s, s.bi_buf);
 513  } else if (s.bi_valid > 0) {
 514    //put_byte(s, (Byte)s->bi_buf);
 515    s.pending_buf[s.pending++] = s.bi_buf;
 516  }
 517  s.bi_buf = 0;
 518  s.bi_valid = 0;
 519}
 520
 521/* ===========================================================================
 522 * Copy a stored block, storing first the length and its
 523 * one's complement if requested.
 524 */
 525function copy_block(s, buf, len, header)
 526//DeflateState *s;
 527//charf    *buf;    /* the input data */
 528//unsigned len;     /* its length */
 529//int      header;  /* true if block header must be written */
 530{
 531  bi_windup(s);        /* align on byte boundary */
 532
 533  if (header) {
 534    put_short(s, len);
 535    put_short(s, ~len);
 536  }
 537//  while (len--) {
 538//    put_byte(s, *buf++);
 539//  }
 540  utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
 541  s.pending += len;
 542}
 543
 544/* ===========================================================================
 545 * Compares to subtrees, using the tree depth as tie breaker when
 546 * the subtrees have equal frequency. This minimizes the worst case length.
 547 */
 548function smaller(tree, n, m, depth) {
 549  var _n2 = n * 2;
 550  var _m2 = m * 2;
 551  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
 552         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
 553}
 554
 555/* ===========================================================================
 556 * Restore the heap property by moving down the tree starting at node k,
 557 * exchanging a node with the smallest of its two sons if necessary, stopping
 558 * when the heap property is re-established (each father smaller than its
 559 * two sons).
 560 */
 561function pqdownheap(s, tree, k)
 562//    deflate_state *s;
 563//    ct_data *tree;  /* the tree to restore */
 564//    int k;               /* node to move down */
 565{
 566  var v = s.heap[k];
 567  var j = k << 1;  /* left son of k */
 568  while (j <= s.heap_len) {
 569    /* Set j to the smallest of the two sons: */
 570    if (j < s.heap_len &&
 571      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
 572      j++;
 573    }
 574    /* Exit if v is smaller than both sons */
 575    if (smaller(tree, v, s.heap[j], s.depth)) { break; }
 576
 577    /* Exchange v with the smallest son */
 578    s.heap[k] = s.heap[j];
 579    k = j;
 580
 581    /* And continue down the tree, setting j to the left son of k */
 582    j <<= 1;
 583  }
 584  s.heap[k] = v;
 585}
 586
 587
 588// inlined manually
 589// var SMALLEST = 1;
 590
 591/* ===========================================================================
 592 * Send the block data compressed using the given Huffman trees
 593 */
 594function compress_block(s, ltree, dtree)
 595//    deflate_state *s;
 596//    const ct_data *ltree; /* literal tree */
 597//    const ct_data *dtree; /* distance tree */
 598{
 599  var dist;           /* distance of matched string */
 600  var lc;             /* match length or unmatched char (if dist == 0) */
 601  var lx = 0;         /* running index in l_buf */
 602  var code;           /* the code to send */
 603  var extra;          /* number of extra bits to send */
 604
 605  if (s.last_lit !== 0) {
 606    do {
 607      dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
 608      lc = s.pending_buf[s.l_buf + lx];
 609      lx++;
 610
 611      if (dist === 0) {
 612        send_code(s, lc, ltree); /* send a literal byte */
 613        //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 614      } else {
 615        /* Here, lc is the match length - MIN_MATCH */
 616        code = _length_code[lc];
 617        send_code(s, code + LITERALS + 1, ltree); /* send the length code */
 618        extra = extra_lbits[code];
 619        if (extra !== 0) {
 620          lc -= base_length[code];
 621          send_bits(s, lc, extra);       /* send the extra length bits */
 622        }
 623        dist--; /* dist is now the match distance - 1 */
 624        code = d_code(dist);
 625        //Assert (code < D_CODES, "bad d_code");
 626
 627        send_code(s, code, dtree);       /* send the distance code */
 628        extra = extra_dbits[code];
 629        if (extra !== 0) {
 630          dist -= base_dist[code];
 631          send_bits(s, dist, extra);   /* send the extra distance bits */
 632        }
 633      } /* literal or match pair ? */
 634
 635      /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 636      //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 637      //       "pendingBuf overflow");
 638
 639    } while (lx < s.last_lit);
 640  }
 641
 642  send_code(s, END_BLOCK, ltree);
 643}
 644
 645
 646/* ===========================================================================
 647 * Construct one Huffman tree and assigns the code bit strings and lengths.
 648 * Update the total bit length for the current block.
 649 * IN assertion: the field freq is set for all tree elements.
 650 * OUT assertions: the fields len and code are set to the optimal bit length
 651 *     and corresponding code. The length opt_len is updated; static_len is
 652 *     also updated if stree is not null. The field max_code is set.
 653 */
 654function build_tree(s, desc)
 655//    deflate_state *s;
 656//    tree_desc *desc; /* the tree descriptor */
 657{
 658  var tree     = desc.dyn_tree;
 659  var stree    = desc.stat_desc.static_tree;
 660  var has_stree = desc.stat_desc.has_stree;
 661  var elems    = desc.stat_desc.elems;
 662  var n, m;          /* iterate over heap elements */
 663  var max_code = -1; /* largest code with non zero frequency */
 664  var node;          /* new node being created */
 665
 666  /* Construct the initial heap, with least frequent element in
 667   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 668   * heap[0] is not used.
 669   */
 670  s.heap_len = 0;
 671  s.heap_max = HEAP_SIZE;
 672
 673  for (n = 0; n < elems; n++) {
 674    if (tree[n * 2]/*.Freq*/ !== 0) {
 675      s.heap[++s.heap_len] = max_code = n;
 676      s.depth[n] = 0;
 677
 678    } else {
 679      tree[n * 2 + 1]/*.Len*/ = 0;
 680    }
 681  }
 682
 683  /* The pkzip format requires that at least one distance code exists,
 684   * and that at least one bit should be sent even if there is only one
 685   * possible code. So to avoid special checks later on we force at least
 686   * two codes of non zero frequency.
 687   */
 688  while (s.heap_len < 2) {
 689    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
 690    tree[node * 2]/*.Freq*/ = 1;
 691    s.depth[node] = 0;
 692    s.opt_len--;
 693
 694    if (has_stree) {
 695      s.static_len -= stree[node * 2 + 1]/*.Len*/;
 696    }
 697    /* node is 0 or 1 so it does not have extra bits */
 698  }
 699  desc.max_code = max_code;
 700
 701  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 702   * establish sub-heaps of increasing lengths:
 703   */
 704  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
 705
 706  /* Construct the Huffman tree by repeatedly combining the least two
 707   * frequent nodes.
 708   */
 709  node = elems;              /* next internal node of the tree */
 710  do {
 711    //pqremove(s, tree, n);  /* n = node of least frequency */
 712    /*** pqremove ***/
 713    n = s.heap[1/*SMALLEST*/];
 714    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
 715    pqdownheap(s, tree, 1/*SMALLEST*/);
 716    /***/
 717
 718    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
 719
 720    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
 721    s.heap[--s.heap_max] = m;
 722
 723    /* Create a new node father of n and m */
 724    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
 725    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
 726    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
 727
 728    /* and insert the new node in the heap */
 729    s.heap[1/*SMALLEST*/] = node++;
 730    pqdownheap(s, tree, 1/*SMALLEST*/);
 731
 732  } while (s.heap_len >= 2);
 733
 734  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
 735
 736  /* At this point, the fields freq and dad are set. We can now
 737   * generate the bit lengths.
 738   */
 739  gen_bitlen(s, desc);
 740
 741  /* The field len is now set, we can generate the bit codes */
 742  gen_codes(tree, max_code, s.bl_count);
 743}
 744
 745
 746/* ===========================================================================
 747 * Scan a literal or distance tree to determine the frequencies of the codes
 748 * in the bit length tree.
 749 */
 750function scan_tree(s, tree, max_code)
 751//    deflate_state *s;
 752//    ct_data *tree;   /* the tree to be scanned */
 753//    int max_code;    /* and its largest code of non zero frequency */
 754{
 755  var n;                     /* iterates over all tree elements */
 756  var prevlen = -1;          /* last emitted length */
 757  var curlen;                /* length of current code */
 758
 759  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 760
 761  var count = 0;             /* repeat count of the current code */
 762  var max_count = 7;         /* max repeat count */
 763  var min_count = 4;         /* min repeat count */
 764
 765  if (nextlen === 0) {
 766    max_count = 138;
 767    min_count = 3;
 768  }
 769  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
 770
 771  for (n = 0; n <= max_code; n++) {
 772    curlen = nextlen;
 773    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 774
 775    if (++count < max_count && curlen === nextlen) {
 776      continue;
 777
 778    } else if (count < min_count) {
 779      s.bl_tree[curlen * 2]/*.Freq*/ += count;
 780
 781    } else if (curlen !== 0) {
 782
 783      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
 784      s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
 785
 786    } else if (count <= 10) {
 787      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
 788
 789    } else {
 790      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
 791    }
 792
 793    count = 0;
 794    prevlen = curlen;
 795
 796    if (nextlen === 0) {
 797      max_count = 138;
 798      min_count = 3;
 799
 800    } else if (curlen === nextlen) {
 801      max_count = 6;
 802      min_count = 3;
 803
 804    } else {
 805      max_count = 7;
 806      min_count = 4;
 807    }
 808  }
 809}
 810
 811
 812/* ===========================================================================
 813 * Send a literal or distance tree in compressed form, using the codes in
 814 * bl_tree.
 815 */
 816function send_tree(s, tree, max_code)
 817//    deflate_state *s;
 818//    ct_data *tree; /* the tree to be scanned */
 819//    int max_code;       /* and its largest code of non zero frequency */
 820{
 821  var n;                     /* iterates over all tree elements */
 822  var prevlen = -1;          /* last emitted length */
 823  var curlen;                /* length of current code */
 824
 825  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
 826
 827  var count = 0;             /* repeat count of the current code */
 828  var max_count = 7;         /* max repeat count */
 829  var min_count = 4;         /* min repeat count */
 830
 831  /* tree[max_code+1].Len = -1; */  /* guard already set */
 832  if (nextlen === 0) {
 833    max_count = 138;
 834    min_count = 3;
 835  }
 836
 837  for (n = 0; n <= max_code; n++) {
 838    curlen = nextlen;
 839    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
 840
 841    if (++count < max_count && curlen === nextlen) {
 842      continue;
 843
 844    } else if (count < min_count) {
 845      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
 846
 847    } else if (curlen !== 0) {
 848      if (curlen !== prevlen) {
 849        send_code(s, curlen, s.bl_tree);
 850        count--;
 851      }
 852      //Assert(count >= 3 && count <= 6, " 3_6?");
 853      send_code(s, REP_3_6, s.bl_tree);
 854      send_bits(s, count - 3, 2);
 855
 856    } else if (count <= 10) {
 857      send_code(s, REPZ_3_10, s.bl_tree);
 858      send_bits(s, count - 3, 3);
 859
 860    } else {
 861      send_code(s, REPZ_11_138, s.bl_tree);
 862      send_bits(s, count - 11, 7);
 863    }
 864
 865    count = 0;
 866    prevlen = curlen;
 867    if (nextlen === 0) {
 868      max_count = 138;
 869      min_count = 3;
 870
 871    } else if (curlen === nextlen) {
 872      max_count = 6;
 873      min_count = 3;
 874
 875    } else {
 876      max_count = 7;
 877      min_count = 4;
 878    }
 879  }
 880}
 881
 882
 883/* ===========================================================================
 884 * Construct the Huffman tree for the bit lengths and return the index in
 885 * bl_order of the last bit length code to send.
 886 */
 887function build_bl_tree(s) {
 888  var max_blindex;  /* index of last bit length code of non zero freq */
 889
 890  /* Determine the bit length frequencies for literal and distance trees */
 891  scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
 892  scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
 893
 894  /* Build the bit length tree: */
 895  build_tree(s, s.bl_desc);
 896  /* opt_len now includes the length of the tree representations, except
 897   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 898   */
 899
 900  /* Determine the number of bit length codes to send. The pkzip format
 901   * requires that at least 4 bit length codes be sent. (appnote.txt says
 902   * 3 but the actual value used is 4.)
 903   */
 904  for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
 905    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
 906      break;
 907    }
 908  }
 909  /* Update opt_len to include the bit length tree and counts */
 910  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
 911  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 912  //        s->opt_len, s->static_len));
 913
 914  return max_blindex;
 915}
 916
 917
 918/* ===========================================================================
 919 * Send the header for a block using dynamic Huffman trees: the counts, the
 920 * lengths of the bit length codes, the literal tree and the distance tree.
 921 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 922 */
 923function send_all_trees(s, lcodes, dcodes, blcodes)
 924//    deflate_state *s;
 925//    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 926{
 927  var rank;                    /* index in bl_order */
 928
 929  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 930  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 931  //        "too many codes");
 932  //Tracev((stderr, "\nbl counts: "));
 933  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
 934  send_bits(s, dcodes - 1,   5);
 935  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
 936  for (rank = 0; rank < blcodes; rank++) {
 937    //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 938    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
 939  }
 940  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 941
 942  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
 943  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 944
 945  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
 946  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 947}
 948
 949
 950/* ===========================================================================
 951 * Check if the data type is TEXT or BINARY, using the following algorithm:
 952 * - TEXT if the two conditions below are satisfied:
 953 *    a) There are no non-portable control characters belonging to the
 954 *       "black list" (0..6, 14..25, 28..31).
 955 *    b) There is at least one printable character belonging to the
 956 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 957 * - BINARY otherwise.
 958 * - The following partially-portable control characters form a
 959 *   "gray list" that is ignored in this detection algorithm:
 960 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 961 * IN assertion: the fields Freq of dyn_ltree are set.
 962 */
 963function detect_data_type(s) {
 964  /* black_mask is the bit mask of black-listed bytes
 965   * set bits 0..6, 14..25, and 28..31
 966   * 0xf3ffc07f = binary 11110011111111111100000001111111
 967   */
 968  var black_mask = 0xf3ffc07f;
 969  var n;
 970
 971  /* Check for non-textual ("black-listed") bytes. */
 972  for (n = 0; n <= 31; n++, black_mask >>>= 1) {
 973    if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
 974      return Z_BINARY;
 975    }
 976  }
 977
 978  /* Check for textual ("white-listed") bytes. */
 979  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
 980      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
 981    return Z_TEXT;
 982  }
 983  for (n = 32; n < LITERALS; n++) {
 984    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
 985      return Z_TEXT;
 986    }
 987  }
 988
 989  /* There are no "black-listed" or "white-listed" bytes:
 990   * this stream either is empty or has tolerated ("gray-listed") bytes only.
 991   */
 992  return Z_BINARY;
 993}
 994
 995
 996var static_init_done = false;
 997
 998/* ===========================================================================
 999 * Initialize the tree data structures for a new zlib stream.
1000 */
1001function _tr_init(s)
1002{
1003
1004  if (!static_init_done) {
1005    tr_static_init();
1006    static_init_done = true;
1007  }
1008
1009  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
1010  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
1011  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
1012
1013  s.bi_buf = 0;
1014  s.bi_valid = 0;
1015
1016  /* Initialize the first block of the first file: */
1017  init_block(s);
1018}
1019
1020
1021/* ===========================================================================
1022 * Send a stored block
1023 */
1024function _tr_stored_block(s, buf, stored_len, last)
1025//DeflateState *s;
1026//charf *buf;       /* input block */
1027//ulg stored_len;   /* length of input block */
1028//int last;         /* one if this is the last block for a file */
1029{
1030  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
1031  copy_block(s, buf, stored_len, true); /* with header */
1032}
1033
1034
1035/* ===========================================================================
1036 * Send one empty static block to give enough lookahead for inflate.
1037 * This takes 10 bits, of which 7 may remain in the bit buffer.
1038 */
1039function _tr_align(s) {
1040  send_bits(s, STATIC_TREES << 1, 3);
1041  send_code(s, END_BLOCK, static_ltree);
1042  bi_flush(s);
1043}
1044
1045
1046/* ===========================================================================
1047 * Determine the best encoding for the current block: dynamic trees, static
1048 * trees or store, and output the encoded block to the zip file.
1049 */
1050function _tr_flush_block(s, buf, stored_len, last)
1051//DeflateState *s;
1052//charf *buf;       /* input block, or NULL if too old */
1053//ulg stored_len;   /* length of input block */
1054//int last;         /* one if this is the last block for a file */
1055{
1056  var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
1057  var max_blindex = 0;        /* index of last bit length code of non zero freq */
1058
1059  /* Build the Huffman trees unless a stored block is forced */
1060  if (s.level > 0) {
1061
1062    /* Check if the file is binary or text */
1063    if (s.strm.data_type === Z_UNKNOWN) {
1064      s.strm.data_type = detect_data_type(s);
1065    }
1066
1067    /* Construct the literal and distance trees */
1068    build_tree(s, s.l_desc);
1069    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1070    //        s->static_len));
1071
1072    build_tree(s, s.d_desc);
1073    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1074    //        s->static_len));
1075    /* At this point, opt_len and static_len are the total bit lengths of
1076     * the compressed block data, excluding the tree representations.
1077     */
1078
1079    /* Build the bit length tree for the above two trees, and get the index
1080     * in bl_order of the last bit length code to send.
1081     */
1082    max_blindex = build_bl_tree(s);
1083
1084    /* Determine the best encoding. Compute the block lengths in bytes. */
1085    opt_lenb = (s.opt_len + 3 + 7) >>> 3;
1086    static_lenb = (s.static_len + 3 + 7) >>> 3;
1087
1088    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1089    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1090    //        s->last_lit));
1091
1092    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
1093
1094  } else {
1095    // Assert(buf != (char*)0, "lost buf");
1096    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1097  }
1098
1099  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
1100    /* 4: two words for the lengths */
1101
1102    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1103     * Otherwise we can't have processed more than WSIZE input bytes since
1104     * the last block flush, because compression would have been
1105     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1106     * transform a block into a stored block.
1107     */
1108    _tr_stored_block(s, buf, stored_len, last);
1109
1110  } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
1111
1112    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
1113    compress_block(s, static_ltree, static_dtree);
1114
1115  } else {
1116    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
1117    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
1118    compress_block(s, s.dyn_ltree, s.dyn_dtree);
1119  }
1120  // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1121  /* The above check is made mod 2^32, for files larger than 512 MB
1122   * and uLong implemented on 32 bits.
1123   */
1124  init_block(s);
1125
1126  if (last) {
1127    bi_windup(s);
1128  }
1129  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1130  //       s->compressed_len-7*last));
1131}
1132
1133/* ===========================================================================
1134 * Save the match info and tally the frequency counts. Return true if
1135 * the current block must be flushed.
1136 */
1137function _tr_tally(s, dist, lc)
1138//    deflate_state *s;
1139//    unsigned dist;  /* distance of matched string */
1140//    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1141{
1142  //var out_length, in_length, dcode;
1143
1144  s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff;
1145  s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
1146
1147  s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
1148  s.last_lit++;
1149
1150  if (dist === 0) {
1151    /* lc is the unmatched char */
1152    s.dyn_ltree[lc * 2]/*.Freq*/++;
1153  } else {
1154    s.matches++;
1155    /* Here, lc is the match length - MIN_MATCH */
1156    dist--;             /* dist = match distance - 1 */
1157    //Assert((ush)dist < (ush)MAX_DIST(s) &&
1158    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1159    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1160
1161    s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
1162    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
1163  }
1164
1165// (!) This block is disabled in zlib defailts,
1166// don't enable it for binary compatibility
1167
1168//#ifdef TRUNCATE_BLOCK
1169//  /* Try to guess if it is profitable to stop the current block here */
1170//  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
1171//    /* Compute an upper bound for the compressed length */
1172//    out_length = s.last_lit*8;
1173//    in_length = s.strstart - s.block_start;
1174//
1175//    for (dcode = 0; dcode < D_CODES; dcode++) {
1176//      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
1177//    }
1178//    out_length >>>= 3;
1179//    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1180//    //       s->last_lit, in_length, out_length,
1181//    //       100L - out_length*100L/in_length));
1182//    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
1183//      return true;
1184//    }
1185//  }
1186//#endif
1187
1188  return (s.last_lit === s.lit_bufsize - 1);
1189  /* We avoid equality with lit_bufsize because of wraparound at 64K
1190   * on 16 bit machines and because stored blocks are restricted to
1191   * 64K-1 bytes.
1192   */
1193}
1194
1195export { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align };