main
Raw Download raw file
   1// Copyright 2012 The Go Authors. All rights reserved.
   2// Use of this source code is governed by a BSD-style
   3// license that can be found in the LICENSE file.
   4
   5package ssh
   6
   7import (
   8	"bytes"
   9	"crypto"
  10	"crypto/aes"
  11	"crypto/cipher"
  12	"crypto/dsa"
  13	"crypto/ecdsa"
  14	"crypto/ed25519"
  15	"crypto/elliptic"
  16	"crypto/md5"
  17	"crypto/rand"
  18	"crypto/rsa"
  19	"crypto/sha256"
  20	"crypto/x509"
  21	"encoding/asn1"
  22	"encoding/base64"
  23	"encoding/binary"
  24	"encoding/hex"
  25	"encoding/pem"
  26	"errors"
  27	"fmt"
  28	"io"
  29	"math/big"
  30	"strings"
  31
  32	"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
  33)
  34
  35// Public key algorithms names. These values can appear in PublicKey.Type,
  36// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
  37// arguments.
  38const (
  39	KeyAlgoRSA        = "ssh-rsa"
  40	KeyAlgoDSA        = "ssh-dss"
  41	KeyAlgoECDSA256   = "ecdsa-sha2-nistp256"
  42	KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
  43	KeyAlgoECDSA384   = "ecdsa-sha2-nistp384"
  44	KeyAlgoECDSA521   = "ecdsa-sha2-nistp521"
  45	KeyAlgoED25519    = "ssh-ed25519"
  46	KeyAlgoSKED25519  = "sk-ssh-ed25519@openssh.com"
  47
  48	// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
  49	// public key formats, so they can't appear as a PublicKey.Type. The
  50	// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
  51	KeyAlgoRSASHA256 = "rsa-sha2-256"
  52	KeyAlgoRSASHA512 = "rsa-sha2-512"
  53)
  54
  55const (
  56	// Deprecated: use KeyAlgoRSA.
  57	SigAlgoRSA = KeyAlgoRSA
  58	// Deprecated: use KeyAlgoRSASHA256.
  59	SigAlgoRSASHA2256 = KeyAlgoRSASHA256
  60	// Deprecated: use KeyAlgoRSASHA512.
  61	SigAlgoRSASHA2512 = KeyAlgoRSASHA512
  62)
  63
  64// parsePubKey parses a public key of the given algorithm.
  65// Use ParsePublicKey for keys with prepended algorithm.
  66func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
  67	switch algo {
  68	case KeyAlgoRSA:
  69		return parseRSA(in)
  70	case KeyAlgoDSA:
  71		return parseDSA(in)
  72	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
  73		return parseECDSA(in)
  74	case KeyAlgoSKECDSA256:
  75		return parseSKECDSA(in)
  76	case KeyAlgoED25519:
  77		return parseED25519(in)
  78	case KeyAlgoSKED25519:
  79		return parseSKEd25519(in)
  80	case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
  81		cert, err := parseCert(in, certKeyAlgoNames[algo])
  82		if err != nil {
  83			return nil, nil, err
  84		}
  85		return cert, nil, nil
  86	}
  87	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
  88}
  89
  90// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
  91// (see sshd(8) manual page) once the options and key type fields have been
  92// removed.
  93func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
  94	in = bytes.TrimSpace(in)
  95
  96	i := bytes.IndexAny(in, " \t")
  97	if i == -1 {
  98		i = len(in)
  99	}
 100	base64Key := in[:i]
 101
 102	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
 103	n, err := base64.StdEncoding.Decode(key, base64Key)
 104	if err != nil {
 105		return nil, "", err
 106	}
 107	key = key[:n]
 108	out, err = ParsePublicKey(key)
 109	if err != nil {
 110		return nil, "", err
 111	}
 112	comment = string(bytes.TrimSpace(in[i:]))
 113	return out, comment, nil
 114}
 115
 116// ParseKnownHosts parses an entry in the format of the known_hosts file.
 117//
 118// The known_hosts format is documented in the sshd(8) manual page. This
 119// function will parse a single entry from in. On successful return, marker
 120// will contain the optional marker value (i.e. "cert-authority" or "revoked")
 121// or else be empty, hosts will contain the hosts that this entry matches,
 122// pubKey will contain the public key and comment will contain any trailing
 123// comment at the end of the line. See the sshd(8) manual page for the various
 124// forms that a host string can take.
 125//
 126// The unparsed remainder of the input will be returned in rest. This function
 127// can be called repeatedly to parse multiple entries.
 128//
 129// If no entries were found in the input then err will be io.EOF. Otherwise a
 130// non-nil err value indicates a parse error.
 131func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
 132	for len(in) > 0 {
 133		end := bytes.IndexByte(in, '\n')
 134		if end != -1 {
 135			rest = in[end+1:]
 136			in = in[:end]
 137		} else {
 138			rest = nil
 139		}
 140
 141		end = bytes.IndexByte(in, '\r')
 142		if end != -1 {
 143			in = in[:end]
 144		}
 145
 146		in = bytes.TrimSpace(in)
 147		if len(in) == 0 || in[0] == '#' {
 148			in = rest
 149			continue
 150		}
 151
 152		i := bytes.IndexAny(in, " \t")
 153		if i == -1 {
 154			in = rest
 155			continue
 156		}
 157
 158		// Strip out the beginning of the known_host key.
 159		// This is either an optional marker or a (set of) hostname(s).
 160		keyFields := bytes.Fields(in)
 161		if len(keyFields) < 3 || len(keyFields) > 5 {
 162			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
 163		}
 164
 165		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
 166		// list of hosts
 167		marker := ""
 168		if keyFields[0][0] == '@' {
 169			marker = string(keyFields[0][1:])
 170			keyFields = keyFields[1:]
 171		}
 172
 173		hosts := string(keyFields[0])
 174		// keyFields[1] contains the key type (e.g. “ssh-rsa”).
 175		// However, that information is duplicated inside the
 176		// base64-encoded key and so is ignored here.
 177
 178		key := bytes.Join(keyFields[2:], []byte(" "))
 179		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
 180			return "", nil, nil, "", nil, err
 181		}
 182
 183		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
 184	}
 185
 186	return "", nil, nil, "", nil, io.EOF
 187}
 188
 189// ParseAuthorizedKey parses a public key from an authorized_keys
 190// file used in OpenSSH according to the sshd(8) manual page.
 191func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
 192	for len(in) > 0 {
 193		end := bytes.IndexByte(in, '\n')
 194		if end != -1 {
 195			rest = in[end+1:]
 196			in = in[:end]
 197		} else {
 198			rest = nil
 199		}
 200
 201		end = bytes.IndexByte(in, '\r')
 202		if end != -1 {
 203			in = in[:end]
 204		}
 205
 206		in = bytes.TrimSpace(in)
 207		if len(in) == 0 || in[0] == '#' {
 208			in = rest
 209			continue
 210		}
 211
 212		i := bytes.IndexAny(in, " \t")
 213		if i == -1 {
 214			in = rest
 215			continue
 216		}
 217
 218		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
 219			return out, comment, options, rest, nil
 220		}
 221
 222		// No key type recognised. Maybe there's an options field at
 223		// the beginning.
 224		var b byte
 225		inQuote := false
 226		var candidateOptions []string
 227		optionStart := 0
 228		for i, b = range in {
 229			isEnd := !inQuote && (b == ' ' || b == '\t')
 230			if (b == ',' && !inQuote) || isEnd {
 231				if i-optionStart > 0 {
 232					candidateOptions = append(candidateOptions, string(in[optionStart:i]))
 233				}
 234				optionStart = i + 1
 235			}
 236			if isEnd {
 237				break
 238			}
 239			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
 240				inQuote = !inQuote
 241			}
 242		}
 243		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
 244			i++
 245		}
 246		if i == len(in) {
 247			// Invalid line: unmatched quote
 248			in = rest
 249			continue
 250		}
 251
 252		in = in[i:]
 253		i = bytes.IndexAny(in, " \t")
 254		if i == -1 {
 255			in = rest
 256			continue
 257		}
 258
 259		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
 260			options = candidateOptions
 261			return out, comment, options, rest, nil
 262		}
 263
 264		in = rest
 265		continue
 266	}
 267
 268	return nil, "", nil, nil, errors.New("ssh: no key found")
 269}
 270
 271// ParsePublicKey parses an SSH public key formatted for use in
 272// the SSH wire protocol according to RFC 4253, section 6.6.
 273func ParsePublicKey(in []byte) (out PublicKey, err error) {
 274	algo, in, ok := parseString(in)
 275	if !ok {
 276		return nil, errShortRead
 277	}
 278	var rest []byte
 279	out, rest, err = parsePubKey(in, string(algo))
 280	if len(rest) > 0 {
 281		return nil, errors.New("ssh: trailing junk in public key")
 282	}
 283
 284	return out, err
 285}
 286
 287// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
 288// authorized_keys file. The return value ends with newline.
 289func MarshalAuthorizedKey(key PublicKey) []byte {
 290	b := &bytes.Buffer{}
 291	b.WriteString(key.Type())
 292	b.WriteByte(' ')
 293	e := base64.NewEncoder(base64.StdEncoding, b)
 294	e.Write(key.Marshal())
 295	e.Close()
 296	b.WriteByte('\n')
 297	return b.Bytes()
 298}
 299
 300// MarshalPrivateKey returns a PEM block with the private key serialized in the
 301// OpenSSH format.
 302func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) {
 303	return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler)
 304}
 305
 306// MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted
 307// private key serialized in the OpenSSH format.
 308func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) {
 309	return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase))
 310}
 311
 312// PublicKey represents a public key using an unspecified algorithm.
 313//
 314// Some PublicKeys provided by this package also implement CryptoPublicKey.
 315type PublicKey interface {
 316	// Type returns the key format name, e.g. "ssh-rsa".
 317	Type() string
 318
 319	// Marshal returns the serialized key data in SSH wire format, with the name
 320	// prefix. To unmarshal the returned data, use the ParsePublicKey function.
 321	Marshal() []byte
 322
 323	// Verify that sig is a signature on the given data using this key. This
 324	// method will hash the data appropriately first. sig.Format is allowed to
 325	// be any signature algorithm compatible with the key type, the caller
 326	// should check if it has more stringent requirements.
 327	Verify(data []byte, sig *Signature) error
 328}
 329
 330// CryptoPublicKey, if implemented by a PublicKey,
 331// returns the underlying crypto.PublicKey form of the key.
 332type CryptoPublicKey interface {
 333	CryptoPublicKey() crypto.PublicKey
 334}
 335
 336// A Signer can create signatures that verify against a public key.
 337//
 338// Some Signers provided by this package also implement MultiAlgorithmSigner.
 339type Signer interface {
 340	// PublicKey returns the associated PublicKey.
 341	PublicKey() PublicKey
 342
 343	// Sign returns a signature for the given data. This method will hash the
 344	// data appropriately first. The signature algorithm is expected to match
 345	// the key format returned by the PublicKey.Type method (and not to be any
 346	// alternative algorithm supported by the key format).
 347	Sign(rand io.Reader, data []byte) (*Signature, error)
 348}
 349
 350// An AlgorithmSigner is a Signer that also supports specifying an algorithm to
 351// use for signing.
 352//
 353// An AlgorithmSigner can't advertise the algorithms it supports, unless it also
 354// implements MultiAlgorithmSigner, so it should be prepared to be invoked with
 355// every algorithm supported by the public key format.
 356type AlgorithmSigner interface {
 357	Signer
 358
 359	// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
 360	// signing algorithm. Callers may pass an empty string for the algorithm in
 361	// which case the AlgorithmSigner will use a default algorithm. This default
 362	// doesn't currently control any behavior in this package.
 363	SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
 364}
 365
 366// MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms
 367// supported by that signer.
 368type MultiAlgorithmSigner interface {
 369	AlgorithmSigner
 370
 371	// Algorithms returns the available algorithms in preference order. The list
 372	// must not be empty, and it must not include certificate types.
 373	Algorithms() []string
 374}
 375
 376// NewSignerWithAlgorithms returns a signer restricted to the specified
 377// algorithms. The algorithms must be set in preference order. The list must not
 378// be empty, and it must not include certificate types. An error is returned if
 379// the specified algorithms are incompatible with the public key type.
 380func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) {
 381	if len(algorithms) == 0 {
 382		return nil, errors.New("ssh: please specify at least one valid signing algorithm")
 383	}
 384	var signerAlgos []string
 385	supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type()))
 386	if s, ok := signer.(*multiAlgorithmSigner); ok {
 387		signerAlgos = s.Algorithms()
 388	} else {
 389		signerAlgos = supportedAlgos
 390	}
 391
 392	for _, algo := range algorithms {
 393		if !contains(supportedAlgos, algo) {
 394			return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q",
 395				algo, signer.PublicKey().Type())
 396		}
 397		if !contains(signerAlgos, algo) {
 398			return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo)
 399		}
 400	}
 401	return &multiAlgorithmSigner{
 402		AlgorithmSigner:     signer,
 403		supportedAlgorithms: algorithms,
 404	}, nil
 405}
 406
 407type multiAlgorithmSigner struct {
 408	AlgorithmSigner
 409	supportedAlgorithms []string
 410}
 411
 412func (s *multiAlgorithmSigner) Algorithms() []string {
 413	return s.supportedAlgorithms
 414}
 415
 416func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool {
 417	if algorithm == "" {
 418		algorithm = underlyingAlgo(s.PublicKey().Type())
 419	}
 420	for _, algo := range s.supportedAlgorithms {
 421		if algorithm == algo {
 422			return true
 423		}
 424	}
 425	return false
 426}
 427
 428func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
 429	if !s.isAlgorithmSupported(algorithm) {
 430		return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms)
 431	}
 432	return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm)
 433}
 434
 435type rsaPublicKey rsa.PublicKey
 436
 437func (r *rsaPublicKey) Type() string {
 438	return "ssh-rsa"
 439}
 440
 441// parseRSA parses an RSA key according to RFC 4253, section 6.6.
 442func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
 443	var w struct {
 444		E    *big.Int
 445		N    *big.Int
 446		Rest []byte `ssh:"rest"`
 447	}
 448	if err := Unmarshal(in, &w); err != nil {
 449		return nil, nil, err
 450	}
 451
 452	if w.E.BitLen() > 24 {
 453		return nil, nil, errors.New("ssh: exponent too large")
 454	}
 455	e := w.E.Int64()
 456	if e < 3 || e&1 == 0 {
 457		return nil, nil, errors.New("ssh: incorrect exponent")
 458	}
 459
 460	var key rsa.PublicKey
 461	key.E = int(e)
 462	key.N = w.N
 463	return (*rsaPublicKey)(&key), w.Rest, nil
 464}
 465
 466func (r *rsaPublicKey) Marshal() []byte {
 467	e := new(big.Int).SetInt64(int64(r.E))
 468	// RSA publickey struct layout should match the struct used by
 469	// parseRSACert in the x/crypto/ssh/agent package.
 470	wirekey := struct {
 471		Name string
 472		E    *big.Int
 473		N    *big.Int
 474	}{
 475		KeyAlgoRSA,
 476		e,
 477		r.N,
 478	}
 479	return Marshal(&wirekey)
 480}
 481
 482func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
 483	supportedAlgos := algorithmsForKeyFormat(r.Type())
 484	if !contains(supportedAlgos, sig.Format) {
 485		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
 486	}
 487	hash := hashFuncs[sig.Format]
 488	h := hash.New()
 489	h.Write(data)
 490	digest := h.Sum(nil)
 491
 492	// Signatures in PKCS1v15 must match the key's modulus in
 493	// length. However with SSH, some signers provide RSA
 494	// signatures which are missing the MSB 0's of the bignum
 495	// represented. With ssh-rsa signatures, this is encouraged by
 496	// the spec (even though e.g. OpenSSH will give the full
 497	// length unconditionally). With rsa-sha2-* signatures, the
 498	// verifier is allowed to support these, even though they are
 499	// out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC
 500	// 8332 Section 3 for rsa-sha2-* details.
 501	//
 502	// In practice:
 503	// * OpenSSH always allows "short" signatures:
 504	//   https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526
 505	//   but always generates padded signatures:
 506	//   https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439
 507	//
 508	// * PuTTY versions 0.81 and earlier will generate short
 509	//   signatures for all RSA signature variants. Note that
 510	//   PuTTY is embedded in other software, such as WinSCP and
 511	//   FileZilla. At the time of writing, a patch has been
 512	//   applied to PuTTY to generate padded signatures for
 513	//   rsa-sha2-*, but not yet released:
 514	//   https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e
 515	//
 516	// * SSH.NET versions 2024.0.0 and earlier will generate short
 517	//   signatures for all RSA signature variants, fixed in 2024.1.0:
 518	//   https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0
 519	//
 520	// As a result, we pad these up to the key size by inserting
 521	// leading 0's.
 522	//
 523	// Note that support for short signatures with rsa-sha2-* may
 524	// be removed in the future due to such signatures not being
 525	// allowed by the spec.
 526	blob := sig.Blob
 527	keySize := (*rsa.PublicKey)(r).Size()
 528	if len(blob) < keySize {
 529		padded := make([]byte, keySize)
 530		copy(padded[keySize-len(blob):], blob)
 531		blob = padded
 532	}
 533	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob)
 534}
 535
 536func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
 537	return (*rsa.PublicKey)(r)
 538}
 539
 540type dsaPublicKey dsa.PublicKey
 541
 542func (k *dsaPublicKey) Type() string {
 543	return "ssh-dss"
 544}
 545
 546func checkDSAParams(param *dsa.Parameters) error {
 547	// SSH specifies FIPS 186-2, which only provided a single size
 548	// (1024 bits) DSA key. FIPS 186-3 allows for larger key
 549	// sizes, which would confuse SSH.
 550	if l := param.P.BitLen(); l != 1024 {
 551		return fmt.Errorf("ssh: unsupported DSA key size %d", l)
 552	}
 553
 554	return nil
 555}
 556
 557// parseDSA parses an DSA key according to RFC 4253, section 6.6.
 558func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
 559	var w struct {
 560		P, Q, G, Y *big.Int
 561		Rest       []byte `ssh:"rest"`
 562	}
 563	if err := Unmarshal(in, &w); err != nil {
 564		return nil, nil, err
 565	}
 566
 567	param := dsa.Parameters{
 568		P: w.P,
 569		Q: w.Q,
 570		G: w.G,
 571	}
 572	if err := checkDSAParams(&param); err != nil {
 573		return nil, nil, err
 574	}
 575
 576	key := &dsaPublicKey{
 577		Parameters: param,
 578		Y:          w.Y,
 579	}
 580	return key, w.Rest, nil
 581}
 582
 583func (k *dsaPublicKey) Marshal() []byte {
 584	// DSA publickey struct layout should match the struct used by
 585	// parseDSACert in the x/crypto/ssh/agent package.
 586	w := struct {
 587		Name       string
 588		P, Q, G, Y *big.Int
 589	}{
 590		k.Type(),
 591		k.P,
 592		k.Q,
 593		k.G,
 594		k.Y,
 595	}
 596
 597	return Marshal(&w)
 598}
 599
 600func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
 601	if sig.Format != k.Type() {
 602		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 603	}
 604	h := hashFuncs[sig.Format].New()
 605	h.Write(data)
 606	digest := h.Sum(nil)
 607
 608	// Per RFC 4253, section 6.6,
 609	// The value for 'dss_signature_blob' is encoded as a string containing
 610	// r, followed by s (which are 160-bit integers, without lengths or
 611	// padding, unsigned, and in network byte order).
 612	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
 613	if len(sig.Blob) != 40 {
 614		return errors.New("ssh: DSA signature parse error")
 615	}
 616	r := new(big.Int).SetBytes(sig.Blob[:20])
 617	s := new(big.Int).SetBytes(sig.Blob[20:])
 618	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
 619		return nil
 620	}
 621	return errors.New("ssh: signature did not verify")
 622}
 623
 624func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
 625	return (*dsa.PublicKey)(k)
 626}
 627
 628type dsaPrivateKey struct {
 629	*dsa.PrivateKey
 630}
 631
 632func (k *dsaPrivateKey) PublicKey() PublicKey {
 633	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
 634}
 635
 636func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
 637	return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
 638}
 639
 640func (k *dsaPrivateKey) Algorithms() []string {
 641	return []string{k.PublicKey().Type()}
 642}
 643
 644func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
 645	if algorithm != "" && algorithm != k.PublicKey().Type() {
 646		return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
 647	}
 648
 649	h := hashFuncs[k.PublicKey().Type()].New()
 650	h.Write(data)
 651	digest := h.Sum(nil)
 652	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
 653	if err != nil {
 654		return nil, err
 655	}
 656
 657	sig := make([]byte, 40)
 658	rb := r.Bytes()
 659	sb := s.Bytes()
 660
 661	copy(sig[20-len(rb):20], rb)
 662	copy(sig[40-len(sb):], sb)
 663
 664	return &Signature{
 665		Format: k.PublicKey().Type(),
 666		Blob:   sig,
 667	}, nil
 668}
 669
 670type ecdsaPublicKey ecdsa.PublicKey
 671
 672func (k *ecdsaPublicKey) Type() string {
 673	return "ecdsa-sha2-" + k.nistID()
 674}
 675
 676func (k *ecdsaPublicKey) nistID() string {
 677	switch k.Params().BitSize {
 678	case 256:
 679		return "nistp256"
 680	case 384:
 681		return "nistp384"
 682	case 521:
 683		return "nistp521"
 684	}
 685	panic("ssh: unsupported ecdsa key size")
 686}
 687
 688type ed25519PublicKey ed25519.PublicKey
 689
 690func (k ed25519PublicKey) Type() string {
 691	return KeyAlgoED25519
 692}
 693
 694func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
 695	var w struct {
 696		KeyBytes []byte
 697		Rest     []byte `ssh:"rest"`
 698	}
 699
 700	if err := Unmarshal(in, &w); err != nil {
 701		return nil, nil, err
 702	}
 703
 704	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
 705		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
 706	}
 707
 708	return ed25519PublicKey(w.KeyBytes), w.Rest, nil
 709}
 710
 711func (k ed25519PublicKey) Marshal() []byte {
 712	w := struct {
 713		Name     string
 714		KeyBytes []byte
 715	}{
 716		KeyAlgoED25519,
 717		[]byte(k),
 718	}
 719	return Marshal(&w)
 720}
 721
 722func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
 723	if sig.Format != k.Type() {
 724		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 725	}
 726	if l := len(k); l != ed25519.PublicKeySize {
 727		return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
 728	}
 729
 730	if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
 731		return errors.New("ssh: signature did not verify")
 732	}
 733
 734	return nil
 735}
 736
 737func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
 738	return ed25519.PublicKey(k)
 739}
 740
 741func supportedEllipticCurve(curve elliptic.Curve) bool {
 742	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
 743}
 744
 745// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
 746func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
 747	var w struct {
 748		Curve    string
 749		KeyBytes []byte
 750		Rest     []byte `ssh:"rest"`
 751	}
 752
 753	if err := Unmarshal(in, &w); err != nil {
 754		return nil, nil, err
 755	}
 756
 757	key := new(ecdsa.PublicKey)
 758
 759	switch w.Curve {
 760	case "nistp256":
 761		key.Curve = elliptic.P256()
 762	case "nistp384":
 763		key.Curve = elliptic.P384()
 764	case "nistp521":
 765		key.Curve = elliptic.P521()
 766	default:
 767		return nil, nil, errors.New("ssh: unsupported curve")
 768	}
 769
 770	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
 771	if key.X == nil || key.Y == nil {
 772		return nil, nil, errors.New("ssh: invalid curve point")
 773	}
 774	return (*ecdsaPublicKey)(key), w.Rest, nil
 775}
 776
 777func (k *ecdsaPublicKey) Marshal() []byte {
 778	// See RFC 5656, section 3.1.
 779	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
 780	// ECDSA publickey struct layout should match the struct used by
 781	// parseECDSACert in the x/crypto/ssh/agent package.
 782	w := struct {
 783		Name string
 784		ID   string
 785		Key  []byte
 786	}{
 787		k.Type(),
 788		k.nistID(),
 789		keyBytes,
 790	}
 791
 792	return Marshal(&w)
 793}
 794
 795func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
 796	if sig.Format != k.Type() {
 797		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 798	}
 799
 800	h := hashFuncs[sig.Format].New()
 801	h.Write(data)
 802	digest := h.Sum(nil)
 803
 804	// Per RFC 5656, section 3.1.2,
 805	// The ecdsa_signature_blob value has the following specific encoding:
 806	//    mpint    r
 807	//    mpint    s
 808	var ecSig struct {
 809		R *big.Int
 810		S *big.Int
 811	}
 812
 813	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
 814		return err
 815	}
 816
 817	if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
 818		return nil
 819	}
 820	return errors.New("ssh: signature did not verify")
 821}
 822
 823func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
 824	return (*ecdsa.PublicKey)(k)
 825}
 826
 827// skFields holds the additional fields present in U2F/FIDO2 signatures.
 828// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
 829type skFields struct {
 830	// Flags contains U2F/FIDO2 flags such as 'user present'
 831	Flags byte
 832	// Counter is a monotonic signature counter which can be
 833	// used to detect concurrent use of a private key, should
 834	// it be extracted from hardware.
 835	Counter uint32
 836}
 837
 838type skECDSAPublicKey struct {
 839	// application is a URL-like string, typically "ssh:" for SSH.
 840	// see openssh/PROTOCOL.u2f for details.
 841	application string
 842	ecdsa.PublicKey
 843}
 844
 845func (k *skECDSAPublicKey) Type() string {
 846	return KeyAlgoSKECDSA256
 847}
 848
 849func (k *skECDSAPublicKey) nistID() string {
 850	return "nistp256"
 851}
 852
 853func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
 854	var w struct {
 855		Curve       string
 856		KeyBytes    []byte
 857		Application string
 858		Rest        []byte `ssh:"rest"`
 859	}
 860
 861	if err := Unmarshal(in, &w); err != nil {
 862		return nil, nil, err
 863	}
 864
 865	key := new(skECDSAPublicKey)
 866	key.application = w.Application
 867
 868	if w.Curve != "nistp256" {
 869		return nil, nil, errors.New("ssh: unsupported curve")
 870	}
 871	key.Curve = elliptic.P256()
 872
 873	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
 874	if key.X == nil || key.Y == nil {
 875		return nil, nil, errors.New("ssh: invalid curve point")
 876	}
 877
 878	return key, w.Rest, nil
 879}
 880
 881func (k *skECDSAPublicKey) Marshal() []byte {
 882	// See RFC 5656, section 3.1.
 883	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
 884	w := struct {
 885		Name        string
 886		ID          string
 887		Key         []byte
 888		Application string
 889	}{
 890		k.Type(),
 891		k.nistID(),
 892		keyBytes,
 893		k.application,
 894	}
 895
 896	return Marshal(&w)
 897}
 898
 899func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
 900	if sig.Format != k.Type() {
 901		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 902	}
 903
 904	h := hashFuncs[sig.Format].New()
 905	h.Write([]byte(k.application))
 906	appDigest := h.Sum(nil)
 907
 908	h.Reset()
 909	h.Write(data)
 910	dataDigest := h.Sum(nil)
 911
 912	var ecSig struct {
 913		R *big.Int
 914		S *big.Int
 915	}
 916	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
 917		return err
 918	}
 919
 920	var skf skFields
 921	if err := Unmarshal(sig.Rest, &skf); err != nil {
 922		return err
 923	}
 924
 925	blob := struct {
 926		ApplicationDigest []byte `ssh:"rest"`
 927		Flags             byte
 928		Counter           uint32
 929		MessageDigest     []byte `ssh:"rest"`
 930	}{
 931		appDigest,
 932		skf.Flags,
 933		skf.Counter,
 934		dataDigest,
 935	}
 936
 937	original := Marshal(blob)
 938
 939	h.Reset()
 940	h.Write(original)
 941	digest := h.Sum(nil)
 942
 943	if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
 944		return nil
 945	}
 946	return errors.New("ssh: signature did not verify")
 947}
 948
 949func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey {
 950	return &k.PublicKey
 951}
 952
 953type skEd25519PublicKey struct {
 954	// application is a URL-like string, typically "ssh:" for SSH.
 955	// see openssh/PROTOCOL.u2f for details.
 956	application string
 957	ed25519.PublicKey
 958}
 959
 960func (k *skEd25519PublicKey) Type() string {
 961	return KeyAlgoSKED25519
 962}
 963
 964func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
 965	var w struct {
 966		KeyBytes    []byte
 967		Application string
 968		Rest        []byte `ssh:"rest"`
 969	}
 970
 971	if err := Unmarshal(in, &w); err != nil {
 972		return nil, nil, err
 973	}
 974
 975	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
 976		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
 977	}
 978
 979	key := new(skEd25519PublicKey)
 980	key.application = w.Application
 981	key.PublicKey = ed25519.PublicKey(w.KeyBytes)
 982
 983	return key, w.Rest, nil
 984}
 985
 986func (k *skEd25519PublicKey) Marshal() []byte {
 987	w := struct {
 988		Name        string
 989		KeyBytes    []byte
 990		Application string
 991	}{
 992		KeyAlgoSKED25519,
 993		[]byte(k.PublicKey),
 994		k.application,
 995	}
 996	return Marshal(&w)
 997}
 998
 999func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
1000	if sig.Format != k.Type() {
1001		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
1002	}
1003	if l := len(k.PublicKey); l != ed25519.PublicKeySize {
1004		return fmt.Errorf("invalid size %d for Ed25519 public key", l)
1005	}
1006
1007	h := hashFuncs[sig.Format].New()
1008	h.Write([]byte(k.application))
1009	appDigest := h.Sum(nil)
1010
1011	h.Reset()
1012	h.Write(data)
1013	dataDigest := h.Sum(nil)
1014
1015	var edSig struct {
1016		Signature []byte `ssh:"rest"`
1017	}
1018
1019	if err := Unmarshal(sig.Blob, &edSig); err != nil {
1020		return err
1021	}
1022
1023	var skf skFields
1024	if err := Unmarshal(sig.Rest, &skf); err != nil {
1025		return err
1026	}
1027
1028	blob := struct {
1029		ApplicationDigest []byte `ssh:"rest"`
1030		Flags             byte
1031		Counter           uint32
1032		MessageDigest     []byte `ssh:"rest"`
1033	}{
1034		appDigest,
1035		skf.Flags,
1036		skf.Counter,
1037		dataDigest,
1038	}
1039
1040	original := Marshal(blob)
1041
1042	if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
1043		return errors.New("ssh: signature did not verify")
1044	}
1045
1046	return nil
1047}
1048
1049func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey {
1050	return k.PublicKey
1051}
1052
1053// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
1054// *ecdsa.PrivateKey or any other crypto.Signer and returns a
1055// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
1056// P-521. DSA keys must use parameter size L1024N160.
1057func NewSignerFromKey(key interface{}) (Signer, error) {
1058	switch key := key.(type) {
1059	case crypto.Signer:
1060		return NewSignerFromSigner(key)
1061	case *dsa.PrivateKey:
1062		return newDSAPrivateKey(key)
1063	default:
1064		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
1065	}
1066}
1067
1068func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
1069	if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
1070		return nil, err
1071	}
1072
1073	return &dsaPrivateKey{key}, nil
1074}
1075
1076type wrappedSigner struct {
1077	signer crypto.Signer
1078	pubKey PublicKey
1079}
1080
1081// NewSignerFromSigner takes any crypto.Signer implementation and
1082// returns a corresponding Signer interface. This can be used, for
1083// example, with keys kept in hardware modules.
1084func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
1085	pubKey, err := NewPublicKey(signer.Public())
1086	if err != nil {
1087		return nil, err
1088	}
1089
1090	return &wrappedSigner{signer, pubKey}, nil
1091}
1092
1093func (s *wrappedSigner) PublicKey() PublicKey {
1094	return s.pubKey
1095}
1096
1097func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
1098	return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
1099}
1100
1101func (s *wrappedSigner) Algorithms() []string {
1102	return algorithmsForKeyFormat(s.pubKey.Type())
1103}
1104
1105func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
1106	if algorithm == "" {
1107		algorithm = s.pubKey.Type()
1108	}
1109
1110	if !contains(s.Algorithms(), algorithm) {
1111		return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
1112	}
1113
1114	hashFunc := hashFuncs[algorithm]
1115	var digest []byte
1116	if hashFunc != 0 {
1117		h := hashFunc.New()
1118		h.Write(data)
1119		digest = h.Sum(nil)
1120	} else {
1121		digest = data
1122	}
1123
1124	signature, err := s.signer.Sign(rand, digest, hashFunc)
1125	if err != nil {
1126		return nil, err
1127	}
1128
1129	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
1130	// for ECDSA and DSA, but that's not the encoding expected by SSH, so
1131	// re-encode.
1132	switch s.pubKey.(type) {
1133	case *ecdsaPublicKey, *dsaPublicKey:
1134		type asn1Signature struct {
1135			R, S *big.Int
1136		}
1137		asn1Sig := new(asn1Signature)
1138		_, err := asn1.Unmarshal(signature, asn1Sig)
1139		if err != nil {
1140			return nil, err
1141		}
1142
1143		switch s.pubKey.(type) {
1144		case *ecdsaPublicKey:
1145			signature = Marshal(asn1Sig)
1146
1147		case *dsaPublicKey:
1148			signature = make([]byte, 40)
1149			r := asn1Sig.R.Bytes()
1150			s := asn1Sig.S.Bytes()
1151			copy(signature[20-len(r):20], r)
1152			copy(signature[40-len(s):40], s)
1153		}
1154	}
1155
1156	return &Signature{
1157		Format: algorithm,
1158		Blob:   signature,
1159	}, nil
1160}
1161
1162// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
1163// or ed25519.PublicKey returns a corresponding PublicKey instance.
1164// ECDSA keys must use P-256, P-384 or P-521.
1165func NewPublicKey(key interface{}) (PublicKey, error) {
1166	switch key := key.(type) {
1167	case *rsa.PublicKey:
1168		return (*rsaPublicKey)(key), nil
1169	case *ecdsa.PublicKey:
1170		if !supportedEllipticCurve(key.Curve) {
1171			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
1172		}
1173		return (*ecdsaPublicKey)(key), nil
1174	case *dsa.PublicKey:
1175		return (*dsaPublicKey)(key), nil
1176	case ed25519.PublicKey:
1177		if l := len(key); l != ed25519.PublicKeySize {
1178			return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
1179		}
1180		return ed25519PublicKey(key), nil
1181	default:
1182		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
1183	}
1184}
1185
1186// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
1187// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
1188// will return a PassphraseMissingError.
1189func ParsePrivateKey(pemBytes []byte) (Signer, error) {
1190	key, err := ParseRawPrivateKey(pemBytes)
1191	if err != nil {
1192		return nil, err
1193	}
1194
1195	return NewSignerFromKey(key)
1196}
1197
1198// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
1199// key and passphrase. It supports the same keys as
1200// ParseRawPrivateKeyWithPassphrase.
1201func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
1202	key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
1203	if err != nil {
1204		return nil, err
1205	}
1206
1207	return NewSignerFromKey(key)
1208}
1209
1210// encryptedBlock tells whether a private key is
1211// encrypted by examining its Proc-Type header
1212// for a mention of ENCRYPTED
1213// according to RFC 1421 Section 4.6.1.1.
1214func encryptedBlock(block *pem.Block) bool {
1215	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
1216}
1217
1218// A PassphraseMissingError indicates that parsing this private key requires a
1219// passphrase. Use ParsePrivateKeyWithPassphrase.
1220type PassphraseMissingError struct {
1221	// PublicKey will be set if the private key format includes an unencrypted
1222	// public key along with the encrypted private key.
1223	PublicKey PublicKey
1224}
1225
1226func (*PassphraseMissingError) Error() string {
1227	return "ssh: this private key is passphrase protected"
1228}
1229
1230// ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports
1231// RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH
1232// formats. If the private key is encrypted, it will return a PassphraseMissingError.
1233func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
1234	block, _ := pem.Decode(pemBytes)
1235	if block == nil {
1236		return nil, errors.New("ssh: no key found")
1237	}
1238
1239	if encryptedBlock(block) {
1240		return nil, &PassphraseMissingError{}
1241	}
1242
1243	switch block.Type {
1244	case "RSA PRIVATE KEY":
1245		return x509.ParsePKCS1PrivateKey(block.Bytes)
1246	// RFC5208 - https://tools.ietf.org/html/rfc5208
1247	case "PRIVATE KEY":
1248		return x509.ParsePKCS8PrivateKey(block.Bytes)
1249	case "EC PRIVATE KEY":
1250		return x509.ParseECPrivateKey(block.Bytes)
1251	case "DSA PRIVATE KEY":
1252		return ParseDSAPrivateKey(block.Bytes)
1253	case "OPENSSH PRIVATE KEY":
1254		return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
1255	default:
1256		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
1257	}
1258}
1259
1260// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
1261// passphrase from a PEM encoded private key. If the passphrase is wrong, it
1262// will return x509.IncorrectPasswordError.
1263func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
1264	block, _ := pem.Decode(pemBytes)
1265	if block == nil {
1266		return nil, errors.New("ssh: no key found")
1267	}
1268
1269	if block.Type == "OPENSSH PRIVATE KEY" {
1270		return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
1271	}
1272
1273	if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
1274		return nil, errors.New("ssh: not an encrypted key")
1275	}
1276
1277	buf, err := x509.DecryptPEMBlock(block, passphrase)
1278	if err != nil {
1279		if err == x509.IncorrectPasswordError {
1280			return nil, err
1281		}
1282		return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
1283	}
1284
1285	var result interface{}
1286
1287	switch block.Type {
1288	case "RSA PRIVATE KEY":
1289		result, err = x509.ParsePKCS1PrivateKey(buf)
1290	case "EC PRIVATE KEY":
1291		result, err = x509.ParseECPrivateKey(buf)
1292	case "DSA PRIVATE KEY":
1293		result, err = ParseDSAPrivateKey(buf)
1294	default:
1295		err = fmt.Errorf("ssh: unsupported key type %q", block.Type)
1296	}
1297	// Because of deficiencies in the format, DecryptPEMBlock does not always
1298	// detect an incorrect password. In these cases decrypted DER bytes is
1299	// random noise. If the parsing of the key returns an asn1.StructuralError
1300	// we return x509.IncorrectPasswordError.
1301	if _, ok := err.(asn1.StructuralError); ok {
1302		return nil, x509.IncorrectPasswordError
1303	}
1304
1305	return result, err
1306}
1307
1308// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
1309// specified by the OpenSSL DSA man page.
1310func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
1311	var k struct {
1312		Version int
1313		P       *big.Int
1314		Q       *big.Int
1315		G       *big.Int
1316		Pub     *big.Int
1317		Priv    *big.Int
1318	}
1319	rest, err := asn1.Unmarshal(der, &k)
1320	if err != nil {
1321		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
1322	}
1323	if len(rest) > 0 {
1324		return nil, errors.New("ssh: garbage after DSA key")
1325	}
1326
1327	return &dsa.PrivateKey{
1328		PublicKey: dsa.PublicKey{
1329			Parameters: dsa.Parameters{
1330				P: k.P,
1331				Q: k.Q,
1332				G: k.G,
1333			},
1334			Y: k.Pub,
1335		},
1336		X: k.Priv,
1337	}, nil
1338}
1339
1340func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
1341	if kdfName != "none" || cipherName != "none" {
1342		return nil, &PassphraseMissingError{}
1343	}
1344	if kdfOpts != "" {
1345		return nil, errors.New("ssh: invalid openssh private key")
1346	}
1347	return privKeyBlock, nil
1348}
1349
1350func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
1351	return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
1352		if kdfName == "none" || cipherName == "none" {
1353			return nil, errors.New("ssh: key is not password protected")
1354		}
1355		if kdfName != "bcrypt" {
1356			return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
1357		}
1358
1359		var opts struct {
1360			Salt   string
1361			Rounds uint32
1362		}
1363		if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
1364			return nil, err
1365		}
1366
1367		k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
1368		if err != nil {
1369			return nil, err
1370		}
1371		key, iv := k[:32], k[32:]
1372
1373		c, err := aes.NewCipher(key)
1374		if err != nil {
1375			return nil, err
1376		}
1377		switch cipherName {
1378		case "aes256-ctr":
1379			ctr := cipher.NewCTR(c, iv)
1380			ctr.XORKeyStream(privKeyBlock, privKeyBlock)
1381		case "aes256-cbc":
1382			if len(privKeyBlock)%c.BlockSize() != 0 {
1383				return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
1384			}
1385			cbc := cipher.NewCBCDecrypter(c, iv)
1386			cbc.CryptBlocks(privKeyBlock, privKeyBlock)
1387		default:
1388			return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
1389		}
1390
1391		return privKeyBlock, nil
1392	}
1393}
1394
1395func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) {
1396	key := generateOpenSSHPadding(privKeyBlock, 8)
1397	return key, "none", "none", "", nil
1398}
1399
1400func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc {
1401	return func(privKeyBlock []byte) ([]byte, string, string, string, error) {
1402		salt := make([]byte, 16)
1403		if _, err := rand.Read(salt); err != nil {
1404			return nil, "", "", "", err
1405		}
1406
1407		opts := struct {
1408			Salt   []byte
1409			Rounds uint32
1410		}{salt, 16}
1411
1412		// Derive key to encrypt the private key block.
1413		k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize)
1414		if err != nil {
1415			return nil, "", "", "", err
1416		}
1417
1418		// Add padding matching the block size of AES.
1419		keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize)
1420
1421		// Encrypt the private key using the derived secret.
1422
1423		dst := make([]byte, len(keyBlock))
1424		key, iv := k[:32], k[32:]
1425		block, err := aes.NewCipher(key)
1426		if err != nil {
1427			return nil, "", "", "", err
1428		}
1429
1430		stream := cipher.NewCTR(block, iv)
1431		stream.XORKeyStream(dst, keyBlock)
1432
1433		return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil
1434	}
1435}
1436
1437const privateKeyAuthMagic = "openssh-key-v1\x00"
1438
1439type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
1440type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error)
1441
1442type openSSHEncryptedPrivateKey struct {
1443	CipherName   string
1444	KdfName      string
1445	KdfOpts      string
1446	NumKeys      uint32
1447	PubKey       []byte
1448	PrivKeyBlock []byte
1449}
1450
1451type openSSHPrivateKey struct {
1452	Check1  uint32
1453	Check2  uint32
1454	Keytype string
1455	Rest    []byte `ssh:"rest"`
1456}
1457
1458type openSSHRSAPrivateKey struct {
1459	N       *big.Int
1460	E       *big.Int
1461	D       *big.Int
1462	Iqmp    *big.Int
1463	P       *big.Int
1464	Q       *big.Int
1465	Comment string
1466	Pad     []byte `ssh:"rest"`
1467}
1468
1469type openSSHEd25519PrivateKey struct {
1470	Pub     []byte
1471	Priv    []byte
1472	Comment string
1473	Pad     []byte `ssh:"rest"`
1474}
1475
1476type openSSHECDSAPrivateKey struct {
1477	Curve   string
1478	Pub     []byte
1479	D       *big.Int
1480	Comment string
1481	Pad     []byte `ssh:"rest"`
1482}
1483
1484// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
1485// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
1486// as the decrypt function to parse an unencrypted private key. See
1487// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
1488func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
1489	if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic {
1490		return nil, errors.New("ssh: invalid openssh private key format")
1491	}
1492	remaining := key[len(privateKeyAuthMagic):]
1493
1494	var w openSSHEncryptedPrivateKey
1495	if err := Unmarshal(remaining, &w); err != nil {
1496		return nil, err
1497	}
1498	if w.NumKeys != 1 {
1499		// We only support single key files, and so does OpenSSH.
1500		// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
1501		return nil, errors.New("ssh: multi-key files are not supported")
1502	}
1503
1504	privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
1505	if err != nil {
1506		if err, ok := err.(*PassphraseMissingError); ok {
1507			pub, errPub := ParsePublicKey(w.PubKey)
1508			if errPub != nil {
1509				return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
1510			}
1511			err.PublicKey = pub
1512		}
1513		return nil, err
1514	}
1515
1516	var pk1 openSSHPrivateKey
1517	if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
1518		if w.CipherName != "none" {
1519			return nil, x509.IncorrectPasswordError
1520		}
1521		return nil, errors.New("ssh: malformed OpenSSH key")
1522	}
1523
1524	switch pk1.Keytype {
1525	case KeyAlgoRSA:
1526		var key openSSHRSAPrivateKey
1527		if err := Unmarshal(pk1.Rest, &key); err != nil {
1528			return nil, err
1529		}
1530
1531		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
1532			return nil, err
1533		}
1534
1535		pk := &rsa.PrivateKey{
1536			PublicKey: rsa.PublicKey{
1537				N: key.N,
1538				E: int(key.E.Int64()),
1539			},
1540			D:      key.D,
1541			Primes: []*big.Int{key.P, key.Q},
1542		}
1543
1544		if err := pk.Validate(); err != nil {
1545			return nil, err
1546		}
1547
1548		pk.Precompute()
1549
1550		return pk, nil
1551	case KeyAlgoED25519:
1552		var key openSSHEd25519PrivateKey
1553		if err := Unmarshal(pk1.Rest, &key); err != nil {
1554			return nil, err
1555		}
1556
1557		if len(key.Priv) != ed25519.PrivateKeySize {
1558			return nil, errors.New("ssh: private key unexpected length")
1559		}
1560
1561		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
1562			return nil, err
1563		}
1564
1565		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
1566		copy(pk, key.Priv)
1567		return &pk, nil
1568	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
1569		var key openSSHECDSAPrivateKey
1570		if err := Unmarshal(pk1.Rest, &key); err != nil {
1571			return nil, err
1572		}
1573
1574		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
1575			return nil, err
1576		}
1577
1578		var curve elliptic.Curve
1579		switch key.Curve {
1580		case "nistp256":
1581			curve = elliptic.P256()
1582		case "nistp384":
1583			curve = elliptic.P384()
1584		case "nistp521":
1585			curve = elliptic.P521()
1586		default:
1587			return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
1588		}
1589
1590		X, Y := elliptic.Unmarshal(curve, key.Pub)
1591		if X == nil || Y == nil {
1592			return nil, errors.New("ssh: failed to unmarshal public key")
1593		}
1594
1595		if key.D.Cmp(curve.Params().N) >= 0 {
1596			return nil, errors.New("ssh: scalar is out of range")
1597		}
1598
1599		x, y := curve.ScalarBaseMult(key.D.Bytes())
1600		if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
1601			return nil, errors.New("ssh: public key does not match private key")
1602		}
1603
1604		return &ecdsa.PrivateKey{
1605			PublicKey: ecdsa.PublicKey{
1606				Curve: curve,
1607				X:     X,
1608				Y:     Y,
1609			},
1610			D: key.D,
1611		}, nil
1612	default:
1613		return nil, errors.New("ssh: unhandled key type")
1614	}
1615}
1616
1617func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) {
1618	var w openSSHEncryptedPrivateKey
1619	var pk1 openSSHPrivateKey
1620
1621	// Random check bytes.
1622	var check uint32
1623	if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
1624		return nil, err
1625	}
1626
1627	pk1.Check1 = check
1628	pk1.Check2 = check
1629	w.NumKeys = 1
1630
1631	// Use a []byte directly on ed25519 keys.
1632	if k, ok := key.(*ed25519.PrivateKey); ok {
1633		key = *k
1634	}
1635
1636	switch k := key.(type) {
1637	case *rsa.PrivateKey:
1638		E := new(big.Int).SetInt64(int64(k.PublicKey.E))
1639		// Marshal public key:
1640		// E and N are in reversed order in the public and private key.
1641		pubKey := struct {
1642			KeyType string
1643			E       *big.Int
1644			N       *big.Int
1645		}{
1646			KeyAlgoRSA,
1647			E, k.PublicKey.N,
1648		}
1649		w.PubKey = Marshal(pubKey)
1650
1651		// Marshal private key.
1652		key := openSSHRSAPrivateKey{
1653			N:       k.PublicKey.N,
1654			E:       E,
1655			D:       k.D,
1656			Iqmp:    k.Precomputed.Qinv,
1657			P:       k.Primes[0],
1658			Q:       k.Primes[1],
1659			Comment: comment,
1660		}
1661		pk1.Keytype = KeyAlgoRSA
1662		pk1.Rest = Marshal(key)
1663	case ed25519.PrivateKey:
1664		pub := make([]byte, ed25519.PublicKeySize)
1665		priv := make([]byte, ed25519.PrivateKeySize)
1666		copy(pub, k[32:])
1667		copy(priv, k)
1668
1669		// Marshal public key.
1670		pubKey := struct {
1671			KeyType string
1672			Pub     []byte
1673		}{
1674			KeyAlgoED25519, pub,
1675		}
1676		w.PubKey = Marshal(pubKey)
1677
1678		// Marshal private key.
1679		key := openSSHEd25519PrivateKey{
1680			Pub:     pub,
1681			Priv:    priv,
1682			Comment: comment,
1683		}
1684		pk1.Keytype = KeyAlgoED25519
1685		pk1.Rest = Marshal(key)
1686	case *ecdsa.PrivateKey:
1687		var curve, keyType string
1688		switch name := k.Curve.Params().Name; name {
1689		case "P-256":
1690			curve = "nistp256"
1691			keyType = KeyAlgoECDSA256
1692		case "P-384":
1693			curve = "nistp384"
1694			keyType = KeyAlgoECDSA384
1695		case "P-521":
1696			curve = "nistp521"
1697			keyType = KeyAlgoECDSA521
1698		default:
1699			return nil, errors.New("ssh: unhandled elliptic curve " + name)
1700		}
1701
1702		pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y)
1703
1704		// Marshal public key.
1705		pubKey := struct {
1706			KeyType string
1707			Curve   string
1708			Pub     []byte
1709		}{
1710			keyType, curve, pub,
1711		}
1712		w.PubKey = Marshal(pubKey)
1713
1714		// Marshal private key.
1715		key := openSSHECDSAPrivateKey{
1716			Curve:   curve,
1717			Pub:     pub,
1718			D:       k.D,
1719			Comment: comment,
1720		}
1721		pk1.Keytype = keyType
1722		pk1.Rest = Marshal(key)
1723	default:
1724		return nil, fmt.Errorf("ssh: unsupported key type %T", k)
1725	}
1726
1727	var err error
1728	// Add padding and encrypt the key if necessary.
1729	w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1))
1730	if err != nil {
1731		return nil, err
1732	}
1733
1734	b := Marshal(w)
1735	block := &pem.Block{
1736		Type:  "OPENSSH PRIVATE KEY",
1737		Bytes: append([]byte(privateKeyAuthMagic), b...),
1738	}
1739	return block, nil
1740}
1741
1742func checkOpenSSHKeyPadding(pad []byte) error {
1743	for i, b := range pad {
1744		if int(b) != i+1 {
1745			return errors.New("ssh: padding not as expected")
1746		}
1747	}
1748	return nil
1749}
1750
1751func generateOpenSSHPadding(block []byte, blockSize int) []byte {
1752	for i, l := 0, len(block); (l+i)%blockSize != 0; i++ {
1753		block = append(block, byte(i+1))
1754	}
1755	return block
1756}
1757
1758// FingerprintLegacyMD5 returns the user presentation of the key's
1759// fingerprint as described by RFC 4716 section 4.
1760func FingerprintLegacyMD5(pubKey PublicKey) string {
1761	md5sum := md5.Sum(pubKey.Marshal())
1762	hexarray := make([]string, len(md5sum))
1763	for i, c := range md5sum {
1764		hexarray[i] = hex.EncodeToString([]byte{c})
1765	}
1766	return strings.Join(hexarray, ":")
1767}
1768
1769// FingerprintSHA256 returns the user presentation of the key's
1770// fingerprint as unpadded base64 encoded sha256 hash.
1771// This format was introduced from OpenSSH 6.8.
1772// https://www.openssh.com/txt/release-6.8
1773// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
1774func FingerprintSHA256(pubKey PublicKey) string {
1775	sha256sum := sha256.Sum256(pubKey.Marshal())
1776	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
1777	return "SHA256:" + hash
1778}