main
Raw Download raw file
  1// Copyright 2013 The Go Authors. All rights reserved.
  2// Use of this source code is governed by a BSD-style
  3// license that can be found in the LICENSE file.
  4
  5package ssh
  6
  7import (
  8	"errors"
  9	"fmt"
 10	"io"
 11	"log"
 12	"net"
 13	"strings"
 14	"sync"
 15)
 16
 17// debugHandshake, if set, prints messages sent and received.  Key
 18// exchange messages are printed as if DH were used, so the debug
 19// messages are wrong when using ECDH.
 20const debugHandshake = false
 21
 22// chanSize sets the amount of buffering SSH connections. This is
 23// primarily for testing: setting chanSize=0 uncovers deadlocks more
 24// quickly.
 25const chanSize = 16
 26
 27// maxPendingPackets sets the maximum number of packets to queue while waiting
 28// for KEX to complete. This limits the total pending data to maxPendingPackets
 29// * maxPacket bytes, which is ~16.8MB.
 30const maxPendingPackets = 64
 31
 32// keyingTransport is a packet based transport that supports key
 33// changes. It need not be thread-safe. It should pass through
 34// msgNewKeys in both directions.
 35type keyingTransport interface {
 36	packetConn
 37
 38	// prepareKeyChange sets up a key change. The key change for a
 39	// direction will be effected if a msgNewKeys message is sent
 40	// or received.
 41	prepareKeyChange(*algorithms, *kexResult) error
 42
 43	// setStrictMode sets the strict KEX mode, notably triggering
 44	// sequence number resets on sending or receiving msgNewKeys.
 45	// If the sequence number is already > 1 when setStrictMode
 46	// is called, an error is returned.
 47	setStrictMode() error
 48
 49	// setInitialKEXDone indicates to the transport that the initial key exchange
 50	// was completed
 51	setInitialKEXDone()
 52}
 53
 54// handshakeTransport implements rekeying on top of a keyingTransport
 55// and offers a thread-safe writePacket() interface.
 56type handshakeTransport struct {
 57	conn   keyingTransport
 58	config *Config
 59
 60	serverVersion []byte
 61	clientVersion []byte
 62
 63	// hostKeys is non-empty if we are the server. In that case,
 64	// it contains all host keys that can be used to sign the
 65	// connection.
 66	hostKeys []Signer
 67
 68	// publicKeyAuthAlgorithms is non-empty if we are the server. In that case,
 69	// it contains the supported client public key authentication algorithms.
 70	publicKeyAuthAlgorithms []string
 71
 72	// hostKeyAlgorithms is non-empty if we are the client. In that case,
 73	// we accept these key types from the server as host key.
 74	hostKeyAlgorithms []string
 75
 76	// On read error, incoming is closed, and readError is set.
 77	incoming  chan []byte
 78	readError error
 79
 80	mu sync.Mutex
 81	// Condition for the above mutex. It is used to notify a completed key
 82	// exchange or a write failure. Writes can wait for this condition while a
 83	// key exchange is in progress.
 84	writeCond      *sync.Cond
 85	writeError     error
 86	sentInitPacket []byte
 87	sentInitMsg    *kexInitMsg
 88	// Used to queue writes when a key exchange is in progress. The length is
 89	// limited by pendingPacketsSize. Once full, writes will block until the key
 90	// exchange is completed or an error occurs. If not empty, it is emptied
 91	// all at once when the key exchange is completed in kexLoop.
 92	pendingPackets   [][]byte
 93	writePacketsLeft uint32
 94	writeBytesLeft   int64
 95	userAuthComplete bool // whether the user authentication phase is complete
 96
 97	// If the read loop wants to schedule a kex, it pings this
 98	// channel, and the write loop will send out a kex
 99	// message.
100	requestKex chan struct{}
101
102	// If the other side requests or confirms a kex, its kexInit
103	// packet is sent here for the write loop to find it.
104	startKex    chan *pendingKex
105	kexLoopDone chan struct{} // closed (with writeError non-nil) when kexLoop exits
106
107	// data for host key checking
108	hostKeyCallback HostKeyCallback
109	dialAddress     string
110	remoteAddr      net.Addr
111
112	// bannerCallback is non-empty if we are the client and it has been set in
113	// ClientConfig. In that case it is called during the user authentication
114	// dance to handle a custom server's message.
115	bannerCallback BannerCallback
116
117	// Algorithms agreed in the last key exchange.
118	algorithms *algorithms
119
120	// Counters exclusively owned by readLoop.
121	readPacketsLeft uint32
122	readBytesLeft   int64
123
124	// The session ID or nil if first kex did not complete yet.
125	sessionID []byte
126
127	// strictMode indicates if the other side of the handshake indicated
128	// that we should be following the strict KEX protocol restrictions.
129	strictMode bool
130}
131
132type pendingKex struct {
133	otherInit []byte
134	done      chan error
135}
136
137func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
138	t := &handshakeTransport{
139		conn:          conn,
140		serverVersion: serverVersion,
141		clientVersion: clientVersion,
142		incoming:      make(chan []byte, chanSize),
143		requestKex:    make(chan struct{}, 1),
144		startKex:      make(chan *pendingKex),
145		kexLoopDone:   make(chan struct{}),
146
147		config: config,
148	}
149	t.writeCond = sync.NewCond(&t.mu)
150	t.resetReadThresholds()
151	t.resetWriteThresholds()
152
153	// We always start with a mandatory key exchange.
154	t.requestKex <- struct{}{}
155	return t
156}
157
158func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
159	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
160	t.dialAddress = dialAddr
161	t.remoteAddr = addr
162	t.hostKeyCallback = config.HostKeyCallback
163	t.bannerCallback = config.BannerCallback
164	if config.HostKeyAlgorithms != nil {
165		t.hostKeyAlgorithms = config.HostKeyAlgorithms
166	} else {
167		t.hostKeyAlgorithms = supportedHostKeyAlgos
168	}
169	go t.readLoop()
170	go t.kexLoop()
171	return t
172}
173
174func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
175	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
176	t.hostKeys = config.hostKeys
177	t.publicKeyAuthAlgorithms = config.PublicKeyAuthAlgorithms
178	go t.readLoop()
179	go t.kexLoop()
180	return t
181}
182
183func (t *handshakeTransport) getSessionID() []byte {
184	return t.sessionID
185}
186
187// waitSession waits for the session to be established. This should be
188// the first thing to call after instantiating handshakeTransport.
189func (t *handshakeTransport) waitSession() error {
190	p, err := t.readPacket()
191	if err != nil {
192		return err
193	}
194	if p[0] != msgNewKeys {
195		return fmt.Errorf("ssh: first packet should be msgNewKeys")
196	}
197
198	return nil
199}
200
201func (t *handshakeTransport) id() string {
202	if len(t.hostKeys) > 0 {
203		return "server"
204	}
205	return "client"
206}
207
208func (t *handshakeTransport) printPacket(p []byte, write bool) {
209	action := "got"
210	if write {
211		action = "sent"
212	}
213
214	if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
215		log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p))
216	} else {
217		msg, err := decode(p)
218		log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err)
219	}
220}
221
222func (t *handshakeTransport) readPacket() ([]byte, error) {
223	p, ok := <-t.incoming
224	if !ok {
225		return nil, t.readError
226	}
227	return p, nil
228}
229
230func (t *handshakeTransport) readLoop() {
231	first := true
232	for {
233		p, err := t.readOnePacket(first)
234		first = false
235		if err != nil {
236			t.readError = err
237			close(t.incoming)
238			break
239		}
240		// If this is the first kex, and strict KEX mode is enabled,
241		// we don't ignore any messages, as they may be used to manipulate
242		// the packet sequence numbers.
243		if !(t.sessionID == nil && t.strictMode) && (p[0] == msgIgnore || p[0] == msgDebug) {
244			continue
245		}
246		t.incoming <- p
247	}
248
249	// Stop writers too.
250	t.recordWriteError(t.readError)
251
252	// Unblock the writer should it wait for this.
253	close(t.startKex)
254
255	// Don't close t.requestKex; it's also written to from writePacket.
256}
257
258func (t *handshakeTransport) pushPacket(p []byte) error {
259	if debugHandshake {
260		t.printPacket(p, true)
261	}
262	return t.conn.writePacket(p)
263}
264
265func (t *handshakeTransport) getWriteError() error {
266	t.mu.Lock()
267	defer t.mu.Unlock()
268	return t.writeError
269}
270
271func (t *handshakeTransport) recordWriteError(err error) {
272	t.mu.Lock()
273	defer t.mu.Unlock()
274	if t.writeError == nil && err != nil {
275		t.writeError = err
276		t.writeCond.Broadcast()
277	}
278}
279
280func (t *handshakeTransport) requestKeyExchange() {
281	select {
282	case t.requestKex <- struct{}{}:
283	default:
284		// something already requested a kex, so do nothing.
285	}
286}
287
288func (t *handshakeTransport) resetWriteThresholds() {
289	t.writePacketsLeft = packetRekeyThreshold
290	if t.config.RekeyThreshold > 0 {
291		t.writeBytesLeft = int64(t.config.RekeyThreshold)
292	} else if t.algorithms != nil {
293		t.writeBytesLeft = t.algorithms.w.rekeyBytes()
294	} else {
295		t.writeBytesLeft = 1 << 30
296	}
297}
298
299func (t *handshakeTransport) kexLoop() {
300
301write:
302	for t.getWriteError() == nil {
303		var request *pendingKex
304		var sent bool
305
306		for request == nil || !sent {
307			var ok bool
308			select {
309			case request, ok = <-t.startKex:
310				if !ok {
311					break write
312				}
313			case <-t.requestKex:
314				break
315			}
316
317			if !sent {
318				if err := t.sendKexInit(); err != nil {
319					t.recordWriteError(err)
320					break
321				}
322				sent = true
323			}
324		}
325
326		if err := t.getWriteError(); err != nil {
327			if request != nil {
328				request.done <- err
329			}
330			break
331		}
332
333		// We're not servicing t.requestKex, but that is OK:
334		// we never block on sending to t.requestKex.
335
336		// We're not servicing t.startKex, but the remote end
337		// has just sent us a kexInitMsg, so it can't send
338		// another key change request, until we close the done
339		// channel on the pendingKex request.
340
341		err := t.enterKeyExchange(request.otherInit)
342
343		t.mu.Lock()
344		t.writeError = err
345		t.sentInitPacket = nil
346		t.sentInitMsg = nil
347
348		t.resetWriteThresholds()
349
350		// we have completed the key exchange. Since the
351		// reader is still blocked, it is safe to clear out
352		// the requestKex channel. This avoids the situation
353		// where: 1) we consumed our own request for the
354		// initial kex, and 2) the kex from the remote side
355		// caused another send on the requestKex channel,
356	clear:
357		for {
358			select {
359			case <-t.requestKex:
360				//
361			default:
362				break clear
363			}
364		}
365
366		request.done <- t.writeError
367
368		// kex finished. Push packets that we received while
369		// the kex was in progress. Don't look at t.startKex
370		// and don't increment writtenSinceKex: if we trigger
371		// another kex while we are still busy with the last
372		// one, things will become very confusing.
373		for _, p := range t.pendingPackets {
374			t.writeError = t.pushPacket(p)
375			if t.writeError != nil {
376				break
377			}
378		}
379		t.pendingPackets = t.pendingPackets[:0]
380		// Unblock writePacket if waiting for KEX.
381		t.writeCond.Broadcast()
382		t.mu.Unlock()
383	}
384
385	// Unblock reader.
386	t.conn.Close()
387
388	// drain startKex channel. We don't service t.requestKex
389	// because nobody does blocking sends there.
390	for request := range t.startKex {
391		request.done <- t.getWriteError()
392	}
393
394	// Mark that the loop is done so that Close can return.
395	close(t.kexLoopDone)
396}
397
398// The protocol uses uint32 for packet counters, so we can't let them
399// reach 1<<32.  We will actually read and write more packets than
400// this, though: the other side may send more packets, and after we
401// hit this limit on writing we will send a few more packets for the
402// key exchange itself.
403const packetRekeyThreshold = (1 << 31)
404
405func (t *handshakeTransport) resetReadThresholds() {
406	t.readPacketsLeft = packetRekeyThreshold
407	if t.config.RekeyThreshold > 0 {
408		t.readBytesLeft = int64(t.config.RekeyThreshold)
409	} else if t.algorithms != nil {
410		t.readBytesLeft = t.algorithms.r.rekeyBytes()
411	} else {
412		t.readBytesLeft = 1 << 30
413	}
414}
415
416func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) {
417	p, err := t.conn.readPacket()
418	if err != nil {
419		return nil, err
420	}
421
422	if t.readPacketsLeft > 0 {
423		t.readPacketsLeft--
424	} else {
425		t.requestKeyExchange()
426	}
427
428	if t.readBytesLeft > 0 {
429		t.readBytesLeft -= int64(len(p))
430	} else {
431		t.requestKeyExchange()
432	}
433
434	if debugHandshake {
435		t.printPacket(p, false)
436	}
437
438	if first && p[0] != msgKexInit {
439		return nil, fmt.Errorf("ssh: first packet should be msgKexInit")
440	}
441
442	if p[0] != msgKexInit {
443		return p, nil
444	}
445
446	firstKex := t.sessionID == nil
447
448	kex := pendingKex{
449		done:      make(chan error, 1),
450		otherInit: p,
451	}
452	t.startKex <- &kex
453	err = <-kex.done
454
455	if debugHandshake {
456		log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
457	}
458
459	if err != nil {
460		return nil, err
461	}
462
463	t.resetReadThresholds()
464
465	// By default, a key exchange is hidden from higher layers by
466	// translating it into msgIgnore.
467	successPacket := []byte{msgIgnore}
468	if firstKex {
469		// sendKexInit() for the first kex waits for
470		// msgNewKeys so the authentication process is
471		// guaranteed to happen over an encrypted transport.
472		successPacket = []byte{msgNewKeys}
473	}
474
475	return successPacket, nil
476}
477
478const (
479	kexStrictClient = "kex-strict-c-v00@openssh.com"
480	kexStrictServer = "kex-strict-s-v00@openssh.com"
481)
482
483// sendKexInit sends a key change message.
484func (t *handshakeTransport) sendKexInit() error {
485	t.mu.Lock()
486	defer t.mu.Unlock()
487	if t.sentInitMsg != nil {
488		// kexInits may be sent either in response to the other side,
489		// or because our side wants to initiate a key change, so we
490		// may have already sent a kexInit. In that case, don't send a
491		// second kexInit.
492		return nil
493	}
494
495	msg := &kexInitMsg{
496		CiphersClientServer:     t.config.Ciphers,
497		CiphersServerClient:     t.config.Ciphers,
498		MACsClientServer:        t.config.MACs,
499		MACsServerClient:        t.config.MACs,
500		CompressionClientServer: supportedCompressions,
501		CompressionServerClient: supportedCompressions,
502	}
503	io.ReadFull(t.config.Rand, msg.Cookie[:])
504
505	// We mutate the KexAlgos slice, in order to add the kex-strict extension algorithm,
506	// and possibly to add the ext-info extension algorithm. Since the slice may be the
507	// user owned KeyExchanges, we create our own slice in order to avoid using user
508	// owned memory by mistake.
509	msg.KexAlgos = make([]string, 0, len(t.config.KeyExchanges)+2) // room for kex-strict and ext-info
510	msg.KexAlgos = append(msg.KexAlgos, t.config.KeyExchanges...)
511
512	isServer := len(t.hostKeys) > 0
513	if isServer {
514		for _, k := range t.hostKeys {
515			// If k is a MultiAlgorithmSigner, we restrict the signature
516			// algorithms. If k is a AlgorithmSigner, presume it supports all
517			// signature algorithms associated with the key format. If k is not
518			// an AlgorithmSigner, we can only assume it only supports the
519			// algorithms that matches the key format. (This means that Sign
520			// can't pick a different default).
521			keyFormat := k.PublicKey().Type()
522
523			switch s := k.(type) {
524			case MultiAlgorithmSigner:
525				for _, algo := range algorithmsForKeyFormat(keyFormat) {
526					if contains(s.Algorithms(), underlyingAlgo(algo)) {
527						msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algo)
528					}
529				}
530			case AlgorithmSigner:
531				msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algorithmsForKeyFormat(keyFormat)...)
532			default:
533				msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, keyFormat)
534			}
535		}
536
537		if t.sessionID == nil {
538			msg.KexAlgos = append(msg.KexAlgos, kexStrictServer)
539		}
540	} else {
541		msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
542
543		// As a client we opt in to receiving SSH_MSG_EXT_INFO so we know what
544		// algorithms the server supports for public key authentication. See RFC
545		// 8308, Section 2.1.
546		//
547		// We also send the strict KEX mode extension algorithm, in order to opt
548		// into the strict KEX mode.
549		if firstKeyExchange := t.sessionID == nil; firstKeyExchange {
550			msg.KexAlgos = append(msg.KexAlgos, "ext-info-c")
551			msg.KexAlgos = append(msg.KexAlgos, kexStrictClient)
552		}
553
554	}
555
556	packet := Marshal(msg)
557
558	// writePacket destroys the contents, so save a copy.
559	packetCopy := make([]byte, len(packet))
560	copy(packetCopy, packet)
561
562	if err := t.pushPacket(packetCopy); err != nil {
563		return err
564	}
565
566	t.sentInitMsg = msg
567	t.sentInitPacket = packet
568
569	return nil
570}
571
572var errSendBannerPhase = errors.New("ssh: SendAuthBanner outside of authentication phase")
573
574func (t *handshakeTransport) writePacket(p []byte) error {
575	t.mu.Lock()
576	defer t.mu.Unlock()
577
578	switch p[0] {
579	case msgKexInit:
580		return errors.New("ssh: only handshakeTransport can send kexInit")
581	case msgNewKeys:
582		return errors.New("ssh: only handshakeTransport can send newKeys")
583	case msgUserAuthBanner:
584		if t.userAuthComplete {
585			return errSendBannerPhase
586		}
587	case msgUserAuthSuccess:
588		t.userAuthComplete = true
589	}
590
591	if t.writeError != nil {
592		return t.writeError
593	}
594
595	if t.sentInitMsg != nil {
596		if len(t.pendingPackets) < maxPendingPackets {
597			// Copy the packet so the writer can reuse the buffer.
598			cp := make([]byte, len(p))
599			copy(cp, p)
600			t.pendingPackets = append(t.pendingPackets, cp)
601			return nil
602		}
603		for t.sentInitMsg != nil {
604			// Block and wait for KEX to complete or an error.
605			t.writeCond.Wait()
606			if t.writeError != nil {
607				return t.writeError
608			}
609		}
610	}
611
612	if t.writeBytesLeft > 0 {
613		t.writeBytesLeft -= int64(len(p))
614	} else {
615		t.requestKeyExchange()
616	}
617
618	if t.writePacketsLeft > 0 {
619		t.writePacketsLeft--
620	} else {
621		t.requestKeyExchange()
622	}
623
624	if err := t.pushPacket(p); err != nil {
625		t.writeError = err
626		t.writeCond.Broadcast()
627	}
628
629	return nil
630}
631
632func (t *handshakeTransport) Close() error {
633	// Close the connection. This should cause the readLoop goroutine to wake up
634	// and close t.startKex, which will shut down kexLoop if running.
635	err := t.conn.Close()
636
637	// Wait for the kexLoop goroutine to complete.
638	// At that point we know that the readLoop goroutine is complete too,
639	// because kexLoop itself waits for readLoop to close the startKex channel.
640	<-t.kexLoopDone
641
642	return err
643}
644
645func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
646	if debugHandshake {
647		log.Printf("%s entered key exchange", t.id())
648	}
649
650	otherInit := &kexInitMsg{}
651	if err := Unmarshal(otherInitPacket, otherInit); err != nil {
652		return err
653	}
654
655	magics := handshakeMagics{
656		clientVersion: t.clientVersion,
657		serverVersion: t.serverVersion,
658		clientKexInit: otherInitPacket,
659		serverKexInit: t.sentInitPacket,
660	}
661
662	clientInit := otherInit
663	serverInit := t.sentInitMsg
664	isClient := len(t.hostKeys) == 0
665	if isClient {
666		clientInit, serverInit = serverInit, clientInit
667
668		magics.clientKexInit = t.sentInitPacket
669		magics.serverKexInit = otherInitPacket
670	}
671
672	var err error
673	t.algorithms, err = findAgreedAlgorithms(isClient, clientInit, serverInit)
674	if err != nil {
675		return err
676	}
677
678	if t.sessionID == nil && ((isClient && contains(serverInit.KexAlgos, kexStrictServer)) || (!isClient && contains(clientInit.KexAlgos, kexStrictClient))) {
679		t.strictMode = true
680		if err := t.conn.setStrictMode(); err != nil {
681			return err
682		}
683	}
684
685	// We don't send FirstKexFollows, but we handle receiving it.
686	//
687	// RFC 4253 section 7 defines the kex and the agreement method for
688	// first_kex_packet_follows. It states that the guessed packet
689	// should be ignored if the "kex algorithm and/or the host
690	// key algorithm is guessed wrong (server and client have
691	// different preferred algorithm), or if any of the other
692	// algorithms cannot be agreed upon". The other algorithms have
693	// already been checked above so the kex algorithm and host key
694	// algorithm are checked here.
695	if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
696		// other side sent a kex message for the wrong algorithm,
697		// which we have to ignore.
698		if _, err := t.conn.readPacket(); err != nil {
699			return err
700		}
701	}
702
703	kex, ok := kexAlgoMap[t.algorithms.kex]
704	if !ok {
705		return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
706	}
707
708	var result *kexResult
709	if len(t.hostKeys) > 0 {
710		result, err = t.server(kex, &magics)
711	} else {
712		result, err = t.client(kex, &magics)
713	}
714
715	if err != nil {
716		return err
717	}
718
719	firstKeyExchange := t.sessionID == nil
720	if firstKeyExchange {
721		t.sessionID = result.H
722	}
723	result.SessionID = t.sessionID
724
725	if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil {
726		return err
727	}
728	if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
729		return err
730	}
731
732	// On the server side, after the first SSH_MSG_NEWKEYS, send a SSH_MSG_EXT_INFO
733	// message with the server-sig-algs extension if the client supports it. See
734	// RFC 8308, Sections 2.4 and 3.1, and [PROTOCOL], Section 1.9.
735	if !isClient && firstKeyExchange && contains(clientInit.KexAlgos, "ext-info-c") {
736		supportedPubKeyAuthAlgosList := strings.Join(t.publicKeyAuthAlgorithms, ",")
737		extInfo := &extInfoMsg{
738			NumExtensions: 2,
739			Payload:       make([]byte, 0, 4+15+4+len(supportedPubKeyAuthAlgosList)+4+16+4+1),
740		}
741		extInfo.Payload = appendInt(extInfo.Payload, len("server-sig-algs"))
742		extInfo.Payload = append(extInfo.Payload, "server-sig-algs"...)
743		extInfo.Payload = appendInt(extInfo.Payload, len(supportedPubKeyAuthAlgosList))
744		extInfo.Payload = append(extInfo.Payload, supportedPubKeyAuthAlgosList...)
745		extInfo.Payload = appendInt(extInfo.Payload, len("ping@openssh.com"))
746		extInfo.Payload = append(extInfo.Payload, "ping@openssh.com"...)
747		extInfo.Payload = appendInt(extInfo.Payload, 1)
748		extInfo.Payload = append(extInfo.Payload, "0"...)
749		if err := t.conn.writePacket(Marshal(extInfo)); err != nil {
750			return err
751		}
752	}
753
754	if packet, err := t.conn.readPacket(); err != nil {
755		return err
756	} else if packet[0] != msgNewKeys {
757		return unexpectedMessageError(msgNewKeys, packet[0])
758	}
759
760	if firstKeyExchange {
761		// Indicates to the transport that the first key exchange is completed
762		// after receiving SSH_MSG_NEWKEYS.
763		t.conn.setInitialKEXDone()
764	}
765
766	return nil
767}
768
769// algorithmSignerWrapper is an AlgorithmSigner that only supports the default
770// key format algorithm.
771//
772// This is technically a violation of the AlgorithmSigner interface, but it
773// should be unreachable given where we use this. Anyway, at least it returns an
774// error instead of panicing or producing an incorrect signature.
775type algorithmSignerWrapper struct {
776	Signer
777}
778
779func (a algorithmSignerWrapper) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
780	if algorithm != underlyingAlgo(a.PublicKey().Type()) {
781		return nil, errors.New("ssh: internal error: algorithmSignerWrapper invoked with non-default algorithm")
782	}
783	return a.Sign(rand, data)
784}
785
786func pickHostKey(hostKeys []Signer, algo string) AlgorithmSigner {
787	for _, k := range hostKeys {
788		if s, ok := k.(MultiAlgorithmSigner); ok {
789			if !contains(s.Algorithms(), underlyingAlgo(algo)) {
790				continue
791			}
792		}
793
794		if algo == k.PublicKey().Type() {
795			return algorithmSignerWrapper{k}
796		}
797
798		k, ok := k.(AlgorithmSigner)
799		if !ok {
800			continue
801		}
802		for _, a := range algorithmsForKeyFormat(k.PublicKey().Type()) {
803			if algo == a {
804				return k
805			}
806		}
807	}
808	return nil
809}
810
811func (t *handshakeTransport) server(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
812	hostKey := pickHostKey(t.hostKeys, t.algorithms.hostKey)
813	if hostKey == nil {
814		return nil, errors.New("ssh: internal error: negotiated unsupported signature type")
815	}
816
817	r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey, t.algorithms.hostKey)
818	return r, err
819}
820
821func (t *handshakeTransport) client(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
822	result, err := kex.Client(t.conn, t.config.Rand, magics)
823	if err != nil {
824		return nil, err
825	}
826
827	hostKey, err := ParsePublicKey(result.HostKey)
828	if err != nil {
829		return nil, err
830	}
831
832	if err := verifyHostKeySignature(hostKey, t.algorithms.hostKey, result); err != nil {
833		return nil, err
834	}
835
836	err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
837	if err != nil {
838		return nil, err
839	}
840
841	return result, nil
842}