main
1// Package ed448 implements Ed448 signature scheme as described in RFC-8032.
2//
3// This package implements two signature variants.
4//
5// | Scheme Name | Sign Function | Verification | Context |
6// |-------------|-------------------|---------------|-------------------|
7// | Ed448 | Sign | Verify | Yes, can be empty |
8// | Ed448Ph | SignPh | VerifyPh | Yes, can be empty |
9// | All above | (PrivateKey).Sign | VerifyAny | As above |
10//
11// Specific functions for sign and verify are defined. A generic signing
12// function for all schemes is available through the crypto.Signer interface,
13// which is implemented by the PrivateKey type. A correspond all-in-one
14// verification method is provided by the VerifyAny function.
15//
16// Both schemes require a context string for domain separation. This parameter
17// is passed using a SignerOptions struct defined in this package.
18//
19// References:
20//
21// - RFC8032: https://rfc-editor.org/rfc/rfc8032.txt
22// - EdDSA for more curves: https://eprint.iacr.org/2015/677
23// - High-speed high-security signatures: https://doi.org/10.1007/s13389-012-0027-1
24package ed448
25
26import (
27 "bytes"
28 "crypto"
29 cryptoRand "crypto/rand"
30 "crypto/subtle"
31 "errors"
32 "fmt"
33 "io"
34 "strconv"
35
36 "github.com/cloudflare/circl/ecc/goldilocks"
37 "github.com/cloudflare/circl/internal/sha3"
38 "github.com/cloudflare/circl/sign"
39)
40
41const (
42 // ContextMaxSize is the maximum length (in bytes) allowed for context.
43 ContextMaxSize = 255
44 // PublicKeySize is the length in bytes of Ed448 public keys.
45 PublicKeySize = 57
46 // PrivateKeySize is the length in bytes of Ed448 private keys.
47 PrivateKeySize = 114
48 // SignatureSize is the length in bytes of signatures.
49 SignatureSize = 114
50 // SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
51 SeedSize = 57
52)
53
54const (
55 paramB = 456 / 8 // Size of keys in bytes.
56 hashSize = 2 * paramB // Size of the hash function's output.
57)
58
59// SignerOptions implements crypto.SignerOpts and augments with parameters
60// that are specific to the Ed448 signature schemes.
61type SignerOptions struct {
62 // Hash must be crypto.Hash(0) for both Ed448 and Ed448Ph.
63 crypto.Hash
64
65 // Context is an optional domain separation string for signing.
66 // Its length must be less or equal than 255 bytes.
67 Context string
68
69 // Scheme is an identifier for choosing a signature scheme.
70 Scheme SchemeID
71}
72
73// SchemeID is an identifier for each signature scheme.
74type SchemeID uint
75
76const (
77 ED448 SchemeID = iota
78 ED448Ph
79)
80
81// PublicKey is the type of Ed448 public keys.
82type PublicKey []byte
83
84// Equal reports whether pub and x have the same value.
85func (pub PublicKey) Equal(x crypto.PublicKey) bool {
86 xx, ok := x.(PublicKey)
87 return ok && bytes.Equal(pub, xx)
88}
89
90// PrivateKey is the type of Ed448 private keys. It implements crypto.Signer.
91type PrivateKey []byte
92
93// Equal reports whether priv and x have the same value.
94func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
95 xx, ok := x.(PrivateKey)
96 return ok && subtle.ConstantTimeCompare(priv, xx) == 1
97}
98
99// Public returns the PublicKey corresponding to priv.
100func (priv PrivateKey) Public() crypto.PublicKey {
101 publicKey := make([]byte, PublicKeySize)
102 copy(publicKey, priv[SeedSize:])
103 return PublicKey(publicKey)
104}
105
106// Seed returns the private key seed corresponding to priv. It is provided for
107// interoperability with RFC 8032. RFC 8032's private keys correspond to seeds
108// in this package.
109func (priv PrivateKey) Seed() []byte {
110 seed := make([]byte, SeedSize)
111 copy(seed, priv[:SeedSize])
112 return seed
113}
114
115func (priv PrivateKey) Scheme() sign.Scheme { return sch }
116
117func (pub PublicKey) Scheme() sign.Scheme { return sch }
118
119func (priv PrivateKey) MarshalBinary() (data []byte, err error) {
120 privateKey := make(PrivateKey, PrivateKeySize)
121 copy(privateKey, priv)
122 return privateKey, nil
123}
124
125func (pub PublicKey) MarshalBinary() (data []byte, err error) {
126 publicKey := make(PublicKey, PublicKeySize)
127 copy(publicKey, pub)
128 return publicKey, nil
129}
130
131// Sign creates a signature of a message given a key pair.
132// This function supports all the two signature variants defined in RFC-8032,
133// namely Ed448 (or pure EdDSA) and Ed448Ph.
134// The opts.HashFunc() must return zero to the specify Ed448 variant. This can
135// be achieved by passing crypto.Hash(0) as the value for opts.
136// Use an Options struct to pass a bool indicating that the ed448Ph variant
137// should be used.
138// The struct can also be optionally used to pass a context string for signing.
139func (priv PrivateKey) Sign(
140 rand io.Reader,
141 message []byte,
142 opts crypto.SignerOpts,
143) (signature []byte, err error) {
144 var ctx string
145 var scheme SchemeID
146
147 if o, ok := opts.(SignerOptions); ok {
148 ctx = o.Context
149 scheme = o.Scheme
150 }
151
152 switch true {
153 case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
154 return Sign(priv, message, ctx), nil
155 case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
156 return SignPh(priv, message, ctx), nil
157 default:
158 return nil, errors.New("ed448: bad hash algorithm")
159 }
160}
161
162// GenerateKey generates a public/private key pair using entropy from rand.
163// If rand is nil, crypto/rand.Reader will be used.
164func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
165 if rand == nil {
166 rand = cryptoRand.Reader
167 }
168
169 seed := make(PrivateKey, SeedSize)
170 if _, err := io.ReadFull(rand, seed); err != nil {
171 return nil, nil, err
172 }
173
174 privateKey := NewKeyFromSeed(seed)
175 publicKey := make([]byte, PublicKeySize)
176 copy(publicKey, privateKey[SeedSize:])
177
178 return publicKey, privateKey, nil
179}
180
181// NewKeyFromSeed calculates a private key from a seed. It will panic if
182// len(seed) is not SeedSize. This function is provided for interoperability
183// with RFC 8032. RFC 8032's private keys correspond to seeds in this
184// package.
185func NewKeyFromSeed(seed []byte) PrivateKey {
186 privateKey := make([]byte, PrivateKeySize)
187 newKeyFromSeed(privateKey, seed)
188 return privateKey
189}
190
191func newKeyFromSeed(privateKey, seed []byte) {
192 if l := len(seed); l != SeedSize {
193 panic("ed448: bad seed length: " + strconv.Itoa(l))
194 }
195
196 var h [hashSize]byte
197 H := sha3.NewShake256()
198 _, _ = H.Write(seed)
199 _, _ = H.Read(h[:])
200 s := &goldilocks.Scalar{}
201 deriveSecretScalar(s, h[:paramB])
202
203 copy(privateKey[:SeedSize], seed)
204 _ = goldilocks.Curve{}.ScalarBaseMult(s).ToBytes(privateKey[SeedSize:])
205}
206
207func signAll(signature []byte, privateKey PrivateKey, message, ctx []byte, preHash bool) {
208 if len(ctx) > ContextMaxSize {
209 panic(fmt.Errorf("ed448: bad context length: %v", len(ctx)))
210 }
211
212 H := sha3.NewShake256()
213 var PHM []byte
214
215 if preHash {
216 var h [64]byte
217 _, _ = H.Write(message)
218 _, _ = H.Read(h[:])
219 PHM = h[:]
220 H.Reset()
221 } else {
222 PHM = message
223 }
224
225 // 1. Hash the 57-byte private key using SHAKE256(x, 114).
226 var h [hashSize]byte
227 _, _ = H.Write(privateKey[:SeedSize])
228 _, _ = H.Read(h[:])
229 s := &goldilocks.Scalar{}
230 deriveSecretScalar(s, h[:paramB])
231 prefix := h[paramB:]
232
233 // 2. Compute SHAKE256(dom4(F, C) || prefix || PH(M), 114).
234 var rPM [hashSize]byte
235 H.Reset()
236
237 writeDom(&H, ctx, preHash)
238
239 _, _ = H.Write(prefix)
240 _, _ = H.Write(PHM)
241 _, _ = H.Read(rPM[:])
242
243 // 3. Compute the point [r]B.
244 r := &goldilocks.Scalar{}
245 r.FromBytes(rPM[:])
246 R := (&[paramB]byte{})[:]
247 if err := (goldilocks.Curve{}.ScalarBaseMult(r).ToBytes(R)); err != nil {
248 panic(err)
249 }
250 // 4. Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114)
251 var hRAM [hashSize]byte
252 H.Reset()
253
254 writeDom(&H, ctx, preHash)
255
256 _, _ = H.Write(R)
257 _, _ = H.Write(privateKey[SeedSize:])
258 _, _ = H.Write(PHM)
259 _, _ = H.Read(hRAM[:])
260
261 // 5. Compute S = (r + k * s) mod order.
262 k := &goldilocks.Scalar{}
263 k.FromBytes(hRAM[:])
264 S := &goldilocks.Scalar{}
265 S.Mul(k, s)
266 S.Add(S, r)
267
268 // 6. The signature is the concatenation of R and S.
269 copy(signature[:paramB], R[:])
270 copy(signature[paramB:], S[:])
271}
272
273// Sign signs the message with privateKey and returns a signature.
274// This function supports the signature variant defined in RFC-8032: Ed448,
275// also known as the pure version of EdDSA.
276// It will panic if len(privateKey) is not PrivateKeySize.
277func Sign(priv PrivateKey, message []byte, ctx string) []byte {
278 signature := make([]byte, SignatureSize)
279 signAll(signature, priv, message, []byte(ctx), false)
280 return signature
281}
282
283// SignPh creates a signature of a message given a keypair.
284// This function supports the signature variant defined in RFC-8032: Ed448ph,
285// meaning it internally hashes the message using SHAKE-256.
286// Context could be passed to this function, which length should be no more than
287// 255. It can be empty.
288func SignPh(priv PrivateKey, message []byte, ctx string) []byte {
289 signature := make([]byte, SignatureSize)
290 signAll(signature, priv, message, []byte(ctx), true)
291 return signature
292}
293
294func verify(public PublicKey, message, signature, ctx []byte, preHash bool) bool {
295 if len(public) != PublicKeySize ||
296 len(signature) != SignatureSize ||
297 len(ctx) > ContextMaxSize ||
298 !isLessThanOrder(signature[paramB:]) {
299 return false
300 }
301
302 P, err := goldilocks.FromBytes(public)
303 if err != nil {
304 return false
305 }
306
307 H := sha3.NewShake256()
308 var PHM []byte
309
310 if preHash {
311 var h [64]byte
312 _, _ = H.Write(message)
313 _, _ = H.Read(h[:])
314 PHM = h[:]
315 H.Reset()
316 } else {
317 PHM = message
318 }
319
320 var hRAM [hashSize]byte
321 R := signature[:paramB]
322
323 writeDom(&H, ctx, preHash)
324
325 _, _ = H.Write(R)
326 _, _ = H.Write(public)
327 _, _ = H.Write(PHM)
328 _, _ = H.Read(hRAM[:])
329
330 k := &goldilocks.Scalar{}
331 k.FromBytes(hRAM[:])
332 S := &goldilocks.Scalar{}
333 S.FromBytes(signature[paramB:])
334
335 encR := (&[paramB]byte{})[:]
336 P.Neg()
337 _ = goldilocks.Curve{}.CombinedMult(S, k, P).ToBytes(encR)
338 return bytes.Equal(R, encR)
339}
340
341// VerifyAny returns true if the signature is valid. Failure cases are invalid
342// signature, or when the public key cannot be decoded.
343// This function supports all the two signature variants defined in RFC-8032,
344// namely Ed448 (or pure EdDSA) and Ed448Ph.
345// The opts.HashFunc() must return zero, this can be achieved by passing
346// crypto.Hash(0) as the value for opts.
347// Use a SignerOptions struct to pass a context string for signing.
348func VerifyAny(public PublicKey, message, signature []byte, opts crypto.SignerOpts) bool {
349 var ctx string
350 var scheme SchemeID
351 if o, ok := opts.(SignerOptions); ok {
352 ctx = o.Context
353 scheme = o.Scheme
354 }
355
356 switch true {
357 case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
358 return Verify(public, message, signature, ctx)
359 case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
360 return VerifyPh(public, message, signature, ctx)
361 default:
362 return false
363 }
364}
365
366// Verify returns true if the signature is valid. Failure cases are invalid
367// signature, or when the public key cannot be decoded.
368// This function supports the signature variant defined in RFC-8032: Ed448,
369// also known as the pure version of EdDSA.
370func Verify(public PublicKey, message, signature []byte, ctx string) bool {
371 return verify(public, message, signature, []byte(ctx), false)
372}
373
374// VerifyPh returns true if the signature is valid. Failure cases are invalid
375// signature, or when the public key cannot be decoded.
376// This function supports the signature variant defined in RFC-8032: Ed448ph,
377// meaning it internally hashes the message using SHAKE-256.
378// Context could be passed to this function, which length should be no more than
379// 255. It can be empty.
380func VerifyPh(public PublicKey, message, signature []byte, ctx string) bool {
381 return verify(public, message, signature, []byte(ctx), true)
382}
383
384func deriveSecretScalar(s *goldilocks.Scalar, h []byte) {
385 h[0] &= 0xFC // The two least significant bits of the first octet are cleared,
386 h[paramB-1] = 0x00 // all eight bits the last octet are cleared, and
387 h[paramB-2] |= 0x80 // the highest bit of the second to last octet is set.
388 s.FromBytes(h[:paramB])
389}
390
391// isLessThanOrder returns true if 0 <= x < order and if the last byte of x is zero.
392func isLessThanOrder(x []byte) bool {
393 order := goldilocks.Curve{}.Order()
394 i := len(order) - 1
395 for i > 0 && x[i] == order[i] {
396 i--
397 }
398 return x[paramB-1] == 0 && x[i] < order[i]
399}
400
401func writeDom(h io.Writer, ctx []byte, preHash bool) {
402 dom4 := "SigEd448"
403 _, _ = h.Write([]byte(dom4))
404
405 if preHash {
406 _, _ = h.Write([]byte{byte(0x01), byte(len(ctx))})
407 } else {
408 _, _ = h.Write([]byte{byte(0x00), byte(len(ctx))})
409 }
410 _, _ = h.Write(ctx)
411}