main
1package goldilocks
2
3import (
4 "errors"
5 "fmt"
6
7 fp "github.com/cloudflare/circl/math/fp448"
8)
9
10// Point is a point on the Goldilocks Curve.
11type Point struct{ x, y, z, ta, tb fp.Elt }
12
13func (P Point) String() string {
14 return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
15}
16
17// FromAffine creates a point from affine coordinates.
18func FromAffine(x, y *fp.Elt) (*Point, error) {
19 P := &Point{
20 x: *x,
21 y: *y,
22 z: fp.One(),
23 ta: *x,
24 tb: *y,
25 }
26 if !(Curve{}).IsOnCurve(P) {
27 return P, errors.New("point not on curve")
28 }
29 return P, nil
30}
31
32// isLessThan returns true if 0 <= x < y, and assumes that slices are of the
33// same length and are interpreted in little-endian order.
34func isLessThan(x, y []byte) bool {
35 i := len(x) - 1
36 for i > 0 && x[i] == y[i] {
37 i--
38 }
39 return x[i] < y[i]
40}
41
42// FromBytes returns a point from the input buffer.
43func FromBytes(in []byte) (*Point, error) {
44 if len(in) < fp.Size+1 {
45 return nil, errors.New("wrong input length")
46 }
47 err := errors.New("invalid decoding")
48 P := &Point{}
49 signX := in[fp.Size] >> 7
50 copy(P.y[:], in[:fp.Size])
51 p := fp.P()
52 if !isLessThan(P.y[:], p[:]) {
53 return nil, err
54 }
55
56 u, v := &fp.Elt{}, &fp.Elt{}
57 one := fp.One()
58 fp.Sqr(u, &P.y) // u = y^2
59 fp.Mul(v, u, ¶mD) // v = dy^2
60 fp.Sub(u, u, &one) // u = y^2-1
61 fp.Sub(v, v, &one) // v = dy^2-1
62 isQR := fp.InvSqrt(&P.x, u, v) // x = sqrt(u/v)
63 if !isQR {
64 return nil, err
65 }
66 fp.Modp(&P.x) // x = x mod p
67 if fp.IsZero(&P.x) && signX == 1 {
68 return nil, err
69 }
70 if signX != (P.x[0] & 1) {
71 fp.Neg(&P.x, &P.x)
72 }
73 P.ta = P.x
74 P.tb = P.y
75 P.z = fp.One()
76 return P, nil
77}
78
79// IsIdentity returns true is P is the identity Point.
80func (P *Point) IsIdentity() bool {
81 return fp.IsZero(&P.x) && !fp.IsZero(&P.y) && !fp.IsZero(&P.z) && P.y == P.z
82}
83
84// IsEqual returns true if P is equivalent to Q.
85func (P *Point) IsEqual(Q *Point) bool {
86 l, r := &fp.Elt{}, &fp.Elt{}
87 fp.Mul(l, &P.x, &Q.z)
88 fp.Mul(r, &Q.x, &P.z)
89 fp.Sub(l, l, r)
90 b := fp.IsZero(l)
91 fp.Mul(l, &P.y, &Q.z)
92 fp.Mul(r, &Q.y, &P.z)
93 fp.Sub(l, l, r)
94 b = b && fp.IsZero(l)
95 fp.Mul(l, &P.ta, &P.tb)
96 fp.Mul(l, l, &Q.z)
97 fp.Mul(r, &Q.ta, &Q.tb)
98 fp.Mul(r, r, &P.z)
99 fp.Sub(l, l, r)
100 b = b && fp.IsZero(l)
101 return b
102}
103
104// Neg obtains the inverse of the Point.
105func (P *Point) Neg() { fp.Neg(&P.x, &P.x); fp.Neg(&P.ta, &P.ta) }
106
107// ToAffine returns the x,y affine coordinates of P.
108func (P *Point) ToAffine() (x, y fp.Elt) {
109 fp.Inv(&P.z, &P.z) // 1/z
110 fp.Mul(&P.x, &P.x, &P.z) // x/z
111 fp.Mul(&P.y, &P.y, &P.z) // y/z
112 fp.Modp(&P.x)
113 fp.Modp(&P.y)
114 fp.SetOne(&P.z)
115 P.ta = P.x
116 P.tb = P.y
117 return P.x, P.y
118}
119
120// ToBytes stores P into a slice of bytes.
121func (P *Point) ToBytes(out []byte) error {
122 if len(out) < fp.Size+1 {
123 return errors.New("invalid decoding")
124 }
125 x, y := P.ToAffine()
126 out[fp.Size] = (x[0] & 1) << 7
127 return fp.ToBytes(out[:fp.Size], &y)
128}
129
130// MarshalBinary encodes the receiver into a binary form and returns the result.
131func (P *Point) MarshalBinary() (data []byte, err error) {
132 data = make([]byte, fp.Size+1)
133 err = P.ToBytes(data[:fp.Size+1])
134 return data, err
135}
136
137// UnmarshalBinary must be able to decode the form generated by MarshalBinary.
138func (P *Point) UnmarshalBinary(data []byte) error { Q, err := FromBytes(data); *P = *Q; return err }
139
140// Double sets P = 2Q.
141func (P *Point) Double() { P.Add(P) }
142
143// Add sets P =P+Q..
144func (P *Point) Add(Q *Point) {
145 // This is formula (5) from "Twisted Edwards Curves Revisited" by
146 // Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
147 // https://doi.org/10.1007/978-3-540-89255-7_20
148 x1, y1, z1, ta1, tb1 := &P.x, &P.y, &P.z, &P.ta, &P.tb
149 x2, y2, z2, ta2, tb2 := &Q.x, &Q.y, &Q.z, &Q.ta, &Q.tb
150 x3, y3, z3, E, H := &P.x, &P.y, &P.z, &P.ta, &P.tb
151 A, B, C, D := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
152 t1, t2, F, G := C, D, &fp.Elt{}, &fp.Elt{}
153 fp.Mul(t1, ta1, tb1) // t1 = ta1*tb1
154 fp.Mul(t2, ta2, tb2) // t2 = ta2*tb2
155 fp.Mul(A, x1, x2) // A = x1*x2
156 fp.Mul(B, y1, y2) // B = y1*y2
157 fp.Mul(C, t1, t2) // t1*t2
158 fp.Mul(C, C, ¶mD) // C = d*t1*t2
159 fp.Mul(D, z1, z2) // D = z1*z2
160 fp.Add(F, x1, y1) // x1+y1
161 fp.Add(E, x2, y2) // x2+y2
162 fp.Mul(E, E, F) // (x1+y1)*(x2+y2)
163 fp.Sub(E, E, A) // (x1+y1)*(x2+y2)-A
164 fp.Sub(E, E, B) // E = (x1+y1)*(x2+y2)-A-B
165 fp.Sub(F, D, C) // F = D-C
166 fp.Add(G, D, C) // G = D+C
167 fp.Sub(H, B, A) // H = B-A
168 fp.Mul(z3, F, G) // Z = F * G
169 fp.Mul(x3, E, F) // X = E * F
170 fp.Mul(y3, G, H) // Y = G * H, T = E * H
171}