main
1// Package goldilocks provides elliptic curve operations over the goldilocks curve.
2package goldilocks
3
4import fp "github.com/cloudflare/circl/math/fp448"
5
6// Curve is the Goldilocks curve x^2+y^2=z^2-39081x^2y^2.
7type Curve struct{}
8
9// Identity returns the identity point.
10func (Curve) Identity() *Point {
11 return &Point{
12 y: fp.One(),
13 z: fp.One(),
14 }
15}
16
17// IsOnCurve returns true if the point lies on the curve.
18func (Curve) IsOnCurve(P *Point) bool {
19 x2, y2, t, t2, z2 := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
20 rhs, lhs := &fp.Elt{}, &fp.Elt{}
21 // Check z != 0
22 eq0 := !fp.IsZero(&P.z)
23
24 fp.Mul(t, &P.ta, &P.tb) // t = ta*tb
25 fp.Sqr(x2, &P.x) // x^2
26 fp.Sqr(y2, &P.y) // y^2
27 fp.Sqr(z2, &P.z) // z^2
28 fp.Sqr(t2, t) // t^2
29 fp.Add(lhs, x2, y2) // x^2 + y^2
30 fp.Mul(rhs, t2, ¶mD) // dt^2
31 fp.Add(rhs, rhs, z2) // z^2 + dt^2
32 fp.Sub(lhs, lhs, rhs) // x^2 + y^2 - (z^2 + dt^2)
33 eq1 := fp.IsZero(lhs)
34
35 fp.Mul(lhs, &P.x, &P.y) // xy
36 fp.Mul(rhs, t, &P.z) // tz
37 fp.Sub(lhs, lhs, rhs) // xy - tz
38 eq2 := fp.IsZero(lhs)
39
40 return eq0 && eq1 && eq2
41}
42
43// Generator returns the generator point.
44func (Curve) Generator() *Point {
45 return &Point{
46 x: genX,
47 y: genY,
48 z: fp.One(),
49 ta: genX,
50 tb: genY,
51 }
52}
53
54// Order returns the number of points in the prime subgroup.
55func (Curve) Order() Scalar { return order }
56
57// Double returns 2P.
58func (Curve) Double(P *Point) *Point { R := *P; R.Double(); return &R }
59
60// Add returns P+Q.
61func (Curve) Add(P, Q *Point) *Point { R := *P; R.Add(Q); return &R }
62
63// ScalarMult returns kP. This function runs in constant time.
64func (e Curve) ScalarMult(k *Scalar, P *Point) *Point {
65 k4 := &Scalar{}
66 k4.divBy4(k)
67 return e.pull(twistCurve{}.ScalarMult(k4, e.push(P)))
68}
69
70// ScalarBaseMult returns kG where G is the generator point. This function runs in constant time.
71func (e Curve) ScalarBaseMult(k *Scalar) *Point {
72 k4 := &Scalar{}
73 k4.divBy4(k)
74 return e.pull(twistCurve{}.ScalarBaseMult(k4))
75}
76
77// CombinedMult returns mG+nP, where G is the generator point. This function is non-constant time.
78func (e Curve) CombinedMult(m, n *Scalar, P *Point) *Point {
79 m4 := &Scalar{}
80 n4 := &Scalar{}
81 m4.divBy4(m)
82 n4.divBy4(n)
83 return e.pull(twistCurve{}.CombinedMult(m4, n4, twistCurve{}.pull(P)))
84}