main
Raw Download raw file
  1// Copyright 2011 The Go Authors. All rights reserved.
  2// Use of this source code is governed by a BSD-style
  3// license that can be found in the LICENSE file.
  4
  5// Package s2k implements the various OpenPGP string-to-key transforms as
  6// specified in RFC 4800 section 3.7.1, and Argon2 specified in
  7// draft-ietf-openpgp-crypto-refresh-08 section 3.7.1.4.
  8package s2k // import "github.com/ProtonMail/go-crypto/openpgp/s2k"
  9
 10import (
 11	"crypto"
 12	"hash"
 13	"io"
 14	"strconv"
 15
 16	"github.com/ProtonMail/go-crypto/openpgp/errors"
 17	"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
 18	"golang.org/x/crypto/argon2"
 19)
 20
 21type Mode uint8
 22
 23// Defines the default S2KMode constants
 24//
 25//	0 (simple), 1(salted), 3(iterated), 4(argon2)
 26const (
 27	SimpleS2K         Mode = 0
 28	SaltedS2K         Mode = 1
 29	IteratedSaltedS2K Mode = 3
 30	Argon2S2K         Mode = 4
 31	GnuS2K            Mode = 101
 32)
 33
 34const Argon2SaltSize int = 16
 35
 36// Params contains all the parameters of the s2k packet
 37type Params struct {
 38	// mode is the mode of s2k function.
 39	// It can be 0 (simple), 1(salted), 3(iterated)
 40	// 2(reserved) 100-110(private/experimental).
 41	mode Mode
 42	// hashId is the ID of the hash function used in any of the modes
 43	hashId byte
 44	// salt is a byte array to use as a salt in hashing process or argon2
 45	saltBytes [Argon2SaltSize]byte
 46	// countByte is used to determine how many rounds of hashing are to
 47	// be performed in s2k mode 3. See RFC 4880 Section 3.7.1.3.
 48	countByte byte
 49	// passes is a parameter in Argon2 to determine the number of iterations
 50	// See RFC the crypto refresh Section 3.7.1.4.
 51	passes byte
 52	// parallelism is a parameter in Argon2 to determine the degree of paralellism
 53	// See RFC the crypto refresh Section 3.7.1.4.
 54	parallelism byte
 55	// memoryExp is a parameter in Argon2 to determine the memory usage
 56	// i.e., 2 ** memoryExp kibibytes
 57	// See RFC the crypto refresh Section 3.7.1.4.
 58	memoryExp byte
 59}
 60
 61// encodeCount converts an iterative "count" in the range 1024 to
 62// 65011712, inclusive, to an encoded count. The return value is the
 63// octet that is actually stored in the GPG file. encodeCount panics
 64// if i is not in the above range (encodedCount above takes care to
 65// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
 66func encodeCount(i int) uint8 {
 67	if i < 65536 || i > 65011712 {
 68		panic("count arg i outside the required range")
 69	}
 70
 71	for encoded := 96; encoded < 256; encoded++ {
 72		count := decodeCount(uint8(encoded))
 73		if count >= i {
 74			return uint8(encoded)
 75		}
 76	}
 77
 78	return 255
 79}
 80
 81// decodeCount returns the s2k mode 3 iterative "count" corresponding to
 82// the encoded octet c.
 83func decodeCount(c uint8) int {
 84	return (16 + int(c&15)) << (uint32(c>>4) + 6)
 85}
 86
 87// encodeMemory converts the Argon2 "memory" in the range parallelism*8 to
 88// 2**31, inclusive, to an encoded memory. The return value is the
 89// octet that is actually stored in the GPG file. encodeMemory panics
 90// if is not in the above range
 91// See OpenPGP crypto refresh Section 3.7.1.4.
 92func encodeMemory(memory uint32, parallelism uint8) uint8 {
 93	if memory < (8*uint32(parallelism)) || memory > uint32(2147483648) {
 94		panic("Memory argument memory is outside the required range")
 95	}
 96
 97	for exp := 3; exp < 31; exp++ {
 98		compare := decodeMemory(uint8(exp))
 99		if compare >= memory {
100			return uint8(exp)
101		}
102	}
103
104	return 31
105}
106
107// decodeMemory computes the decoded memory in kibibytes as 2**memoryExponent
108func decodeMemory(memoryExponent uint8) uint32 {
109	return uint32(1) << memoryExponent
110}
111
112// Simple writes to out the result of computing the Simple S2K function (RFC
113// 4880, section 3.7.1.1) using the given hash and input passphrase.
114func Simple(out []byte, h hash.Hash, in []byte) {
115	Salted(out, h, in, nil)
116}
117
118var zero [1]byte
119
120// Salted writes to out the result of computing the Salted S2K function (RFC
121// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
122func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
123	done := 0
124	var digest []byte
125
126	for i := 0; done < len(out); i++ {
127		h.Reset()
128		for j := 0; j < i; j++ {
129			h.Write(zero[:])
130		}
131		h.Write(salt)
132		h.Write(in)
133		digest = h.Sum(digest[:0])
134		n := copy(out[done:], digest)
135		done += n
136	}
137}
138
139// Iterated writes to out the result of computing the Iterated and Salted S2K
140// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
141// salt and iteration count.
142func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
143	combined := make([]byte, len(in)+len(salt))
144	copy(combined, salt)
145	copy(combined[len(salt):], in)
146
147	if count < len(combined) {
148		count = len(combined)
149	}
150
151	done := 0
152	var digest []byte
153	for i := 0; done < len(out); i++ {
154		h.Reset()
155		for j := 0; j < i; j++ {
156			h.Write(zero[:])
157		}
158		written := 0
159		for written < count {
160			if written+len(combined) > count {
161				todo := count - written
162				h.Write(combined[:todo])
163				written = count
164			} else {
165				h.Write(combined)
166				written += len(combined)
167			}
168		}
169		digest = h.Sum(digest[:0])
170		n := copy(out[done:], digest)
171		done += n
172	}
173}
174
175// Argon2 writes to out the key derived from the password (in) with the Argon2
176// function (the crypto refresh, section 3.7.1.4)
177func Argon2(out []byte, in []byte, salt []byte, passes uint8, paralellism uint8, memoryExp uint8) {
178	key := argon2.IDKey(in, salt, uint32(passes), decodeMemory(memoryExp), paralellism, uint32(len(out)))
179	copy(out[:], key)
180}
181
182// Generate generates valid parameters from given configuration.
183// It will enforce the Iterated and Salted or Argon2 S2K method.
184func Generate(rand io.Reader, c *Config) (*Params, error) {
185	var params *Params
186	if c != nil && c.Mode() == Argon2S2K {
187		// handle Argon2 case
188		argonConfig := c.Argon2()
189		params = &Params{
190			mode:        Argon2S2K,
191			passes:      argonConfig.Passes(),
192			parallelism: argonConfig.Parallelism(),
193			memoryExp:   argonConfig.EncodedMemory(),
194		}
195	} else if c != nil && c.PassphraseIsHighEntropy && c.Mode() == SaltedS2K { // Allow SaltedS2K if PassphraseIsHighEntropy
196		hashId, ok := algorithm.HashToHashId(c.hash())
197		if !ok {
198			return nil, errors.UnsupportedError("no such hash")
199		}
200
201		params = &Params{
202			mode:   SaltedS2K,
203			hashId: hashId,
204		}
205	} else { // Enforce IteratedSaltedS2K method otherwise
206		hashId, ok := algorithm.HashToHashId(c.hash())
207		if !ok {
208			return nil, errors.UnsupportedError("no such hash")
209		}
210		if c != nil {
211			c.S2KMode = IteratedSaltedS2K
212		}
213		params = &Params{
214			mode:      IteratedSaltedS2K,
215			hashId:    hashId,
216			countByte: c.EncodedCount(),
217		}
218	}
219	if _, err := io.ReadFull(rand, params.salt()); err != nil {
220		return nil, err
221	}
222	return params, nil
223}
224
225// Parse reads a binary specification for a string-to-key transformation from r
226// and returns a function which performs that transform. If the S2K is a special
227// GNU extension that indicates that the private key is missing, then the error
228// returned is errors.ErrDummyPrivateKey.
229func Parse(r io.Reader) (f func(out, in []byte), err error) {
230	params, err := ParseIntoParams(r)
231	if err != nil {
232		return nil, err
233	}
234
235	return params.Function()
236}
237
238// ParseIntoParams reads a binary specification for a string-to-key
239// transformation from r and returns a struct describing the s2k parameters.
240func ParseIntoParams(r io.Reader) (params *Params, err error) {
241	var buf [Argon2SaltSize + 3]byte
242
243	_, err = io.ReadFull(r, buf[:1])
244	if err != nil {
245		return
246	}
247
248	params = &Params{
249		mode: Mode(buf[0]),
250	}
251
252	switch params.mode {
253	case SimpleS2K:
254		_, err = io.ReadFull(r, buf[:1])
255		if err != nil {
256			return nil, err
257		}
258		params.hashId = buf[0]
259		return params, nil
260	case SaltedS2K:
261		_, err = io.ReadFull(r, buf[:9])
262		if err != nil {
263			return nil, err
264		}
265		params.hashId = buf[0]
266		copy(params.salt(), buf[1:9])
267		return params, nil
268	case IteratedSaltedS2K:
269		_, err = io.ReadFull(r, buf[:10])
270		if err != nil {
271			return nil, err
272		}
273		params.hashId = buf[0]
274		copy(params.salt(), buf[1:9])
275		params.countByte = buf[9]
276		return params, nil
277	case Argon2S2K:
278		_, err = io.ReadFull(r, buf[:Argon2SaltSize+3])
279		if err != nil {
280			return nil, err
281		}
282		copy(params.salt(), buf[:Argon2SaltSize])
283		params.passes = buf[Argon2SaltSize]
284		params.parallelism = buf[Argon2SaltSize+1]
285		params.memoryExp = buf[Argon2SaltSize+2]
286		if err := validateArgon2Params(params); err != nil {
287			return nil, err
288		}
289		return params, nil
290	case GnuS2K:
291		// This is a GNU extension. See
292		// https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gnupg.git;a=blob;f=doc/DETAILS;h=fe55ae16ab4e26d8356dc574c9e8bc935e71aef1;hb=23191d7851eae2217ecdac6484349849a24fd94a#l1109
293		if _, err = io.ReadFull(r, buf[:5]); err != nil {
294			return nil, err
295		}
296		params.hashId = buf[0]
297		if buf[1] == 'G' && buf[2] == 'N' && buf[3] == 'U' && buf[4] == 1 {
298			return params, nil
299		}
300		return nil, errors.UnsupportedError("GNU S2K extension")
301	}
302
303	return nil, errors.UnsupportedError("S2K function")
304}
305
306func (params *Params) Mode() Mode {
307	return params.mode
308}
309
310func (params *Params) Dummy() bool {
311	return params != nil && params.mode == GnuS2K
312}
313
314func (params *Params) salt() []byte {
315	switch params.mode {
316	case SaltedS2K, IteratedSaltedS2K:
317		return params.saltBytes[:8]
318	case Argon2S2K:
319		return params.saltBytes[:Argon2SaltSize]
320	default:
321		return nil
322	}
323}
324
325func (params *Params) Function() (f func(out, in []byte), err error) {
326	if params.Dummy() {
327		return nil, errors.ErrDummyPrivateKey("dummy key found")
328	}
329	var hashObj crypto.Hash
330	if params.mode != Argon2S2K {
331		var ok bool
332		hashObj, ok = algorithm.HashIdToHashWithSha1(params.hashId)
333		if !ok {
334			return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(params.hashId)))
335		}
336		if !hashObj.Available() {
337			return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashObj)))
338		}
339	}
340
341	switch params.mode {
342	case SimpleS2K:
343		f := func(out, in []byte) {
344			Simple(out, hashObj.New(), in)
345		}
346
347		return f, nil
348	case SaltedS2K:
349		f := func(out, in []byte) {
350			Salted(out, hashObj.New(), in, params.salt())
351		}
352
353		return f, nil
354	case IteratedSaltedS2K:
355		f := func(out, in []byte) {
356			Iterated(out, hashObj.New(), in, params.salt(), decodeCount(params.countByte))
357		}
358
359		return f, nil
360	case Argon2S2K:
361		f := func(out, in []byte) {
362			Argon2(out, in, params.salt(), params.passes, params.parallelism, params.memoryExp)
363		}
364		return f, nil
365	}
366
367	return nil, errors.UnsupportedError("S2K function")
368}
369
370func (params *Params) Serialize(w io.Writer) (err error) {
371	if _, err = w.Write([]byte{uint8(params.mode)}); err != nil {
372		return
373	}
374	if params.mode != Argon2S2K {
375		if _, err = w.Write([]byte{params.hashId}); err != nil {
376			return
377		}
378	}
379	if params.Dummy() {
380		_, err = w.Write(append([]byte("GNU"), 1))
381		return
382	}
383	if params.mode > 0 {
384		if _, err = w.Write(params.salt()); err != nil {
385			return
386		}
387		if params.mode == IteratedSaltedS2K {
388			_, err = w.Write([]byte{params.countByte})
389		}
390		if params.mode == Argon2S2K {
391			_, err = w.Write([]byte{params.passes, params.parallelism, params.memoryExp})
392		}
393	}
394	return
395}
396
397// Serialize salts and stretches the given passphrase and writes the
398// resulting key into key. It also serializes an S2K descriptor to
399// w. The key stretching can be configured with c, which may be
400// nil. In that case, sensible defaults will be used.
401func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
402	params, err := Generate(rand, c)
403	if err != nil {
404		return err
405	}
406	err = params.Serialize(w)
407	if err != nil {
408		return err
409	}
410
411	f, err := params.Function()
412	if err != nil {
413		return err
414	}
415	f(key, passphrase)
416	return nil
417}
418
419// validateArgon2Params checks that the argon2 parameters are valid according to RFC9580.
420func validateArgon2Params(params *Params) error {
421	// The number of passes t and the degree of parallelism p MUST be non-zero.
422	if params.parallelism == 0 {
423		return errors.StructuralError("invalid argon2 params: parallelism is 0")
424	}
425	if params.passes == 0 {
426		return errors.StructuralError("invalid argon2 params: iterations is 0")
427	}
428
429	// The encoded memory size MUST be a value from 3+ceil(log2(p)) to 31,
430	// such that the decoded memory size m is a value from 8*p to 2^31.
431	if params.memoryExp > 31 || decodeMemory(params.memoryExp) < 8*uint32(params.parallelism) {
432		return errors.StructuralError("invalid argon2 params: memory is out of bounds")
433	}
434
435	return nil
436}