main
Raw Download raw file
  1package bitcurves
  2
  3// Copyright 2010 The Go Authors. All rights reserved.
  4// Copyright 2011 ThePiachu. All rights reserved.
  5// Use of this source code is governed by a BSD-style
  6// license that can be found in the LICENSE file.
  7
  8// Package bitelliptic implements several Koblitz elliptic curves over prime
  9// fields.
 10
 11// This package operates, internally, on Jacobian coordinates. For a given
 12// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
 13// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
 14// calculation can be performed within the transform (as in ScalarMult and
 15// ScalarBaseMult). But even for Add and Double, it's faster to apply and
 16// reverse the transform than to operate in affine coordinates.
 17
 18import (
 19	"crypto/elliptic"
 20	"io"
 21	"math/big"
 22	"sync"
 23)
 24
 25// A BitCurve represents a Koblitz Curve with a=0.
 26// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
 27type BitCurve struct {
 28	Name    string
 29	P       *big.Int // the order of the underlying field
 30	N       *big.Int // the order of the base point
 31	B       *big.Int // the constant of the BitCurve equation
 32	Gx, Gy  *big.Int // (x,y) of the base point
 33	BitSize int      // the size of the underlying field
 34}
 35
 36// Params returns the parameters of the given BitCurve (see BitCurve struct)
 37func (bitCurve *BitCurve) Params() (cp *elliptic.CurveParams) {
 38	cp = new(elliptic.CurveParams)
 39	cp.Name = bitCurve.Name
 40	cp.P = bitCurve.P
 41	cp.N = bitCurve.N
 42	cp.Gx = bitCurve.Gx
 43	cp.Gy = bitCurve.Gy
 44	cp.BitSize = bitCurve.BitSize
 45	return cp
 46}
 47
 48// IsOnCurve returns true if the given (x,y) lies on the BitCurve.
 49func (bitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
 50	// y² = x³ + b
 51	y2 := new(big.Int).Mul(y, y) //y²
 52	y2.Mod(y2, bitCurve.P)       //y²%P
 53
 54	x3 := new(big.Int).Mul(x, x) //x²
 55	x3.Mul(x3, x)                //x³
 56
 57	x3.Add(x3, bitCurve.B) //x³+B
 58	x3.Mod(x3, bitCurve.P) //(x³+B)%P
 59
 60	return x3.Cmp(y2) == 0
 61}
 62
 63// affineFromJacobian reverses the Jacobian transform. See the comment at the
 64// top of the file.
 65func (bitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
 66	if z.Cmp(big.NewInt(0)) == 0 {
 67		panic("bitcurve: Can't convert to affine with Jacobian Z = 0")
 68	}
 69	// x = YZ^2 mod P
 70	zinv := new(big.Int).ModInverse(z, bitCurve.P)
 71	zinvsq := new(big.Int).Mul(zinv, zinv)
 72
 73	xOut = new(big.Int).Mul(x, zinvsq)
 74	xOut.Mod(xOut, bitCurve.P)
 75	// y = YZ^3 mod P
 76	zinvsq.Mul(zinvsq, zinv)
 77	yOut = new(big.Int).Mul(y, zinvsq)
 78	yOut.Mod(yOut, bitCurve.P)
 79	return xOut, yOut
 80}
 81
 82// Add returns the sum of (x1,y1) and (x2,y2)
 83func (bitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
 84	z := new(big.Int).SetInt64(1)
 85	x, y, z := bitCurve.addJacobian(x1, y1, z, x2, y2, z)
 86	return bitCurve.affineFromJacobian(x, y, z)
 87}
 88
 89// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
 90// (x2, y2, z2) and returns their sum, also in Jacobian form.
 91func (bitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
 92	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
 93	z1z1 := new(big.Int).Mul(z1, z1)
 94	z1z1.Mod(z1z1, bitCurve.P)
 95	z2z2 := new(big.Int).Mul(z2, z2)
 96	z2z2.Mod(z2z2, bitCurve.P)
 97
 98	u1 := new(big.Int).Mul(x1, z2z2)
 99	u1.Mod(u1, bitCurve.P)
100	u2 := new(big.Int).Mul(x2, z1z1)
101	u2.Mod(u2, bitCurve.P)
102	h := new(big.Int).Sub(u2, u1)
103	if h.Sign() == -1 {
104		h.Add(h, bitCurve.P)
105	}
106	i := new(big.Int).Lsh(h, 1)
107	i.Mul(i, i)
108	j := new(big.Int).Mul(h, i)
109
110	s1 := new(big.Int).Mul(y1, z2)
111	s1.Mul(s1, z2z2)
112	s1.Mod(s1, bitCurve.P)
113	s2 := new(big.Int).Mul(y2, z1)
114	s2.Mul(s2, z1z1)
115	s2.Mod(s2, bitCurve.P)
116	r := new(big.Int).Sub(s2, s1)
117	if r.Sign() == -1 {
118		r.Add(r, bitCurve.P)
119	}
120	r.Lsh(r, 1)
121	v := new(big.Int).Mul(u1, i)
122
123	x3 := new(big.Int).Set(r)
124	x3.Mul(x3, x3)
125	x3.Sub(x3, j)
126	x3.Sub(x3, v)
127	x3.Sub(x3, v)
128	x3.Mod(x3, bitCurve.P)
129
130	y3 := new(big.Int).Set(r)
131	v.Sub(v, x3)
132	y3.Mul(y3, v)
133	s1.Mul(s1, j)
134	s1.Lsh(s1, 1)
135	y3.Sub(y3, s1)
136	y3.Mod(y3, bitCurve.P)
137
138	z3 := new(big.Int).Add(z1, z2)
139	z3.Mul(z3, z3)
140	z3.Sub(z3, z1z1)
141	if z3.Sign() == -1 {
142		z3.Add(z3, bitCurve.P)
143	}
144	z3.Sub(z3, z2z2)
145	if z3.Sign() == -1 {
146		z3.Add(z3, bitCurve.P)
147	}
148	z3.Mul(z3, h)
149	z3.Mod(z3, bitCurve.P)
150
151	return x3, y3, z3
152}
153
154// Double returns 2*(x,y)
155func (bitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
156	z1 := new(big.Int).SetInt64(1)
157	return bitCurve.affineFromJacobian(bitCurve.doubleJacobian(x1, y1, z1))
158}
159
160// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
161// returns its double, also in Jacobian form.
162func (bitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
163	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
164
165	a := new(big.Int).Mul(x, x) //X1²
166	b := new(big.Int).Mul(y, y) //Y1²
167	c := new(big.Int).Mul(b, b) //B²
168
169	d := new(big.Int).Add(x, b) //X1+B
170	d.Mul(d, d)                 //(X1+B)²
171	d.Sub(d, a)                 //(X1+B)²-A
172	d.Sub(d, c)                 //(X1+B)²-A-C
173	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
174
175	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
176	f := new(big.Int).Mul(e, e)             //E²
177
178	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
179	x3.Sub(f, x3)                            //F-2*D
180	x3.Mod(x3, bitCurve.P)
181
182	y3 := new(big.Int).Sub(d, x3)                  //D-X3
183	y3.Mul(e, y3)                                  //E*(D-X3)
184	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
185	y3.Mod(y3, bitCurve.P)
186
187	z3 := new(big.Int).Mul(y, z) //Y1*Z1
188	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
189	z3.Mod(z3, bitCurve.P)
190
191	return x3, y3, z3
192}
193
194// TODO: double check if it is okay
195// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
196func (bitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
197	// We have a slight problem in that the identity of the group (the
198	// point at infinity) cannot be represented in (x, y) form on a finite
199	// machine. Thus the standard add/double algorithm has to be tweaked
200	// slightly: our initial state is not the identity, but x, and we
201	// ignore the first true bit in |k|.  If we don't find any true bits in
202	// |k|, then we return nil, nil, because we cannot return the identity
203	// element.
204
205	Bz := new(big.Int).SetInt64(1)
206	x := Bx
207	y := By
208	z := Bz
209
210	seenFirstTrue := false
211	for _, byte := range k {
212		for bitNum := 0; bitNum < 8; bitNum++ {
213			if seenFirstTrue {
214				x, y, z = bitCurve.doubleJacobian(x, y, z)
215			}
216			if byte&0x80 == 0x80 {
217				if !seenFirstTrue {
218					seenFirstTrue = true
219				} else {
220					x, y, z = bitCurve.addJacobian(Bx, By, Bz, x, y, z)
221				}
222			}
223			byte <<= 1
224		}
225	}
226
227	if !seenFirstTrue {
228		return nil, nil
229	}
230
231	return bitCurve.affineFromJacobian(x, y, z)
232}
233
234// ScalarBaseMult returns k*G, where G is the base point of the group and k is
235// an integer in big-endian form.
236func (bitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
237	return bitCurve.ScalarMult(bitCurve.Gx, bitCurve.Gy, k)
238}
239
240var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
241
242// TODO: double check if it is okay
243// GenerateKey returns a public/private key pair. The private key is generated
244// using the given reader, which must return random data.
245func (bitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
246	byteLen := (bitCurve.BitSize + 7) >> 3
247	priv = make([]byte, byteLen)
248
249	for x == nil {
250		_, err = io.ReadFull(rand, priv)
251		if err != nil {
252			return
253		}
254		// We have to mask off any excess bits in the case that the size of the
255		// underlying field is not a whole number of bytes.
256		priv[0] &= mask[bitCurve.BitSize%8]
257		// This is because, in tests, rand will return all zeros and we don't
258		// want to get the point at infinity and loop forever.
259		priv[1] ^= 0x42
260		x, y = bitCurve.ScalarBaseMult(priv)
261	}
262	return
263}
264
265// Marshal converts a point into the form specified in section 4.3.6 of ANSI
266// X9.62.
267func (bitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
268	byteLen := (bitCurve.BitSize + 7) >> 3
269
270	ret := make([]byte, 1+2*byteLen)
271	ret[0] = 4 // uncompressed point
272
273	xBytes := x.Bytes()
274	copy(ret[1+byteLen-len(xBytes):], xBytes)
275	yBytes := y.Bytes()
276	copy(ret[1+2*byteLen-len(yBytes):], yBytes)
277	return ret
278}
279
280// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
281// error, x = nil.
282func (bitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
283	byteLen := (bitCurve.BitSize + 7) >> 3
284	if len(data) != 1+2*byteLen {
285		return
286	}
287	if data[0] != 4 { // uncompressed form
288		return
289	}
290	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
291	y = new(big.Int).SetBytes(data[1+byteLen:])
292	return
293}
294
295//curve parameters taken from:
296//http://www.secg.org/collateral/sec2_final.pdf
297
298var initonce sync.Once
299var secp160k1 *BitCurve
300var secp192k1 *BitCurve
301var secp224k1 *BitCurve
302var secp256k1 *BitCurve
303
304func initAll() {
305	initS160()
306	initS192()
307	initS224()
308	initS256()
309}
310
311func initS160() {
312	// See SEC 2 section 2.4.1
313	secp160k1 = new(BitCurve)
314	secp160k1.Name = "secp160k1"
315	secp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16)
316	secp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16)
317	secp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16)
318	secp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16)
319	secp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16)
320	secp160k1.BitSize = 160
321}
322
323func initS192() {
324	// See SEC 2 section 2.5.1
325	secp192k1 = new(BitCurve)
326	secp192k1.Name = "secp192k1"
327	secp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16)
328	secp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16)
329	secp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16)
330	secp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16)
331	secp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16)
332	secp192k1.BitSize = 192
333}
334
335func initS224() {
336	// See SEC 2 section 2.6.1
337	secp224k1 = new(BitCurve)
338	secp224k1.Name = "secp224k1"
339	secp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16)
340	secp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16)
341	secp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16)
342	secp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16)
343	secp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16)
344	secp224k1.BitSize = 224
345}
346
347func initS256() {
348	// See SEC 2 section 2.7.1
349	secp256k1 = new(BitCurve)
350	secp256k1.Name = "secp256k1"
351	secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
352	secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
353	secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
354	secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
355	secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
356	secp256k1.BitSize = 256
357}
358
359// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)
360func S160() *BitCurve {
361	initonce.Do(initAll)
362	return secp160k1
363}
364
365// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)
366func S192() *BitCurve {
367	initonce.Do(initAll)
368	return secp192k1
369}
370
371// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)
372func S224() *BitCurve {
373	initonce.Do(initAll)
374	return secp224k1
375}
376
377// S256 returns a BitCurve which implements bitcurves (see SEC 2 section 2.7.1)
378func S256() *BitCurve {
379	initonce.Do(initAll)
380	return secp256k1
381}